MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

About MIST

MIST is the community of Magnetosphere, Ionosphere and Solar-Terrestrial researchers working in the United Kingdom. We represent the interests of MIST scientists and hold meetings to showcase MIST science twice a year.

  • News: News relevant to members of the MIST community.
  • Science: MIST science nuggets, as well as briefing papers designed to introduce policymakers to our research.
  • Meetings: Details of upcoming MIST meetings and summer schools, as well as the list of past MIST meetings.
  • Community: Find out about MIST researchers through the UK, MIST Council, MIST's mailing list, as well as the MIST Charter and history of the organisation.
  • Awards: The awards that MIST researchers are eligible for, alongside a list of those who have been honoured.

Untangling the periodic ‘flapping’ and ‘breathing’ behaviour of Saturn’s equatorial magnetosphere

By Arianna Sorba, Department of Physics and Astronomy, University College London, UK.

At Saturn, the planet’s rotation axis and the dipole axis are aligned to within 0.01° [Dougherty et al., 2018], and so the magnetosphere’s magnetic field should be extremely azimuthally symmetric. However the Cassini space mission, which orbited Saturn from 2004-2017, observed mysterious periodic variations in the magnetic field at a period close to the planetary rotation rate. These observations suggested that the outer magnetosphere’s equatorial current sheet was `flapping’ above and below the rotational equator once per planetary rotation, to a first approximation acting like a rotating, tilted disc [Arridge et al., 2011].

However this ‘flapping’ picture does not fully explain the observed magnetic field periodicities. More recently, some studies have suggested the magnetosphere may also display ‘breathing’ behaviour; a periodic large-scale compression and expansion of the system, associated with a thickening and thinning of the current sheet [Ramer et al., 2016, Thomsen et al., 2017]. In Sorba et al. [2018], we investigate these two dynamic behaviours in tandem by combining a geometric model of a tilted and rippled current sheet, with a force-balance model of Saturn’s magnetodisc. We vary the magnetodisc model system size with longitude to simulate the breathing behaviour, and find that models that include this behaviour agree better with the observations than the flapping only models. This can be seen in the figure below, which shows that for an example Cassini orbit, both the amplitude and phase of the magnetic field variations are better characterised by the flapping and breathing model, especially for the meridional component (middle panel).

The underlying cause of this periodic dynamical behaviour is still an area of active research, but is thought to be due to two hemispheric magnetic field perturbations rotating at different rates. The study by Sorba et al. [2018] provides a basis for understanding the complex relationship between these perturbations and the observed current sheet dynamics.

For more information, please see the paper below:

Sorba, A.M., N. Achilleos, P. Guio, C.S. Arridge, N. Sergis, and M.K. Dougherty. (2018), The periodic flapping and breathing of Saturn's magnetodisk during equinox, J. Geophys. Res. Space Physics, 123. https://doi.org/10.1029/2018JA025764

Figure: Radial (a), meridional (b), and azimuthal (c) components of the magnetic field measured by Cassini along Rev 120 Inbound. Magnetometer data shown in black, flapping only model shown in red, and flapping and breathing model shown in blue. Annotation labels underneath the time axis give the cylindrical radial distance of Cassini from the planet centre, and Saturn magnetic local time.