MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

About MIST

MIST is the community of Magnetosphere, Ionosphere and Solar-Terrestrial researchers working in the United Kingdom. We represent the interests of MIST scientists and hold meetings to showcase MIST science twice a year.

  • News: News relevant to members of the MIST community.
  • Science: MIST science nuggets, as well as briefing papers designed to introduce policymakers to our research.
  • Meetings: Details of upcoming MIST meetings and summer schools, as well as the list of past MIST meetings.
  • Community: Find out about MIST researchers through the UK, MIST Council, MIST's mailing list, as well as the MIST Charter and history of the organisation.
  • Awards: The awards that MIST researchers are eligible for, alongside a list of those who have been honoured.

How well can we estimate Pedersen conductance from the THEMIS white-light all-sky cameras?

by Mai Mai Lam (University of Southampton) 

The substorm cycle comprises the loading and explosive release of magnetic energy into the Earth system, causing complex and brilliant auroral light displays as large as a continent. Within one substorm, over 50% of the total solar wind energy input to the Earth system is estimated to be converted to Joule heating of the atmosphere.Such Joule heating is highly variable, and difficult to measure for individual substorms. One quantity that we need to measure in order to calculate the Joule heating is the distribution of Pedersen conductance. Ideally this should be done across the very large range of latitudes and local times that substorms expand into. Pedersen conductance can be examined with high accuracy by exploiting ground-based incoherent scatter radar data, but only on the scale of a few kilometres.

The THEMIS all-sky imagers form a network of nonfiltered cameras that spans North America. Previous results have shown that the optical intensity of a single ground camera with a green filter can be used to find a reasonable estimate of Pedersen conductance.  Therefore we asked whether THEMIS white-light cameras could measure the conductance as precisely as radars can, but at multiple locations across a continent. We found that the conductance estimated by one THEMIS camera has an uncertainty of 40% compared to the radar estimates on a spatial scale of 10 – 100 km and a timescale of 10 minutes. In addition, our results indicate that the THEMIS camera network could identify regions of high and low Pedersen conductance on even finer spatio-temporal scales. This means we can use the THEMIS network, and its data archive, to learn more about how much substorms heat up the atmosphere and how complicated and changeable this behaviour is.

For more information please see the paper below:

“How well can we estimate Pedersen conductance from the THEMIS white‐light all‐sky cameras?”, M. M. Lam , M. P. Freeman,  C. M. Jackman,  I. J. Rae, N. M. E. Kalmoni,  J. K. Sandhu,  C. Forsyth. Journal of Geophysical Research. https://doi.org/10.1029/2018JA026067

Figure caption: (a) Absolute difference between camera- and radar-derived 1 min Pedersen conductance (black solid) and the effect of different temporal smoothing (coloured broken). (b) As for a, but for the relative difference between camera- and radar-derived Pedersen conductance (normalised to the radar conductance). (c) Comparison of camera-derived and radar-derived Pedersen conductance values for days with different geomagnetic conditions as indicated by Kp: 1 min radar values (blue crosses), 1 min radar values smoothed over 10 min (red diamonds), and 1 min values derived from camera intensity (black squares).