MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

STFC Public Engagement Early-Career Researcher (PEER) Forum

The STFC has issued a call for applications to join their Public Engagement Early-Career Researcher (PEER) Forum, which is designed to support talented scientists and engineers in the early stages of their career in developing their public engagement and outreach goals. This forum is geared towards PhD students and early-career postdocs developing ideas for public engagement with similarly-minded researchers in a context that allows them to feed suggestions for the improvement of STFC's programmes back to STFC itself, and involves meeting twice a year. The deadline for applications is 4pm on 3 June 2019. For more information and more detail on what the scheme involves, you can visit the PEER Forum webpage or This email address is being protected from spambots. You need JavaScript enabled to view it..

The aims of the PEER Forum are as follows:

  • To foster peer learning and peer support between early career scientists and engineers with a passion for public engagement and outreach.
  • To improve understanding of the support STFC provides for public engagement and outreach (including funding mechanisms, evaluation, and reporting) and how to successfully utilise this support.
  • To stimulate discussions that help to develop and influence STFC’s approaches to public engagement.

ESA Science Programme Committee greenlights SMILE

The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) has been given the green light for implementation by ESA's Science Programme Committee. SMILE will explore the Sun-Earth connection in a very novel way, by mapping solar wind-magnetosphere interactions in soft X-rays. SMILE is a joint mission by ESA and the Chinese Academy of Sciences (CSA). The UK is one of many countries contributing to the payload development.

The SMILE payload comprises four instruments: a soft X-ray imager (SXI), a UV auroral imager (UVI) and an in situ measurement package composed of a light ion analyser and a magnetometer. The UK leads SXI, Canada leads UVI, and China leads the ion analyser and magnetometer. SMILE will fly in a highly elliptical polar orbit with an apogee of 20 Earth radii to image the magnetosphere and the Northern Lights for more than 40 hours continuously per orbit. The launch is planned in November 2023.

For more information, visit the European Space Agency, the Chinese Academy of Sciences, or Mullard Space Science Laboratory.

Debye mission proposal for ESA F-class call

We are currently preparing a proposal for the space mission “Debye” in response to ESA’s F-Class call. As the first dedicated electron-astrophysics mission, Debye will use the solar wind as a testbed to study universal small-scale electron processes throughout the universe. The mission's key science question is: “How are electrons heated in astrophysical plasmas?”
 
Debye will consist of up to four spacecraft that will orbit the Lagrange point L2. The main spacecraft will measure electron distribution functions with unprecedented cadence and very high resolution, electric fields, magnetic fields, and plasma ions. The deployable spacecraft will provide multi-point and multi-baseline measurements of the magnetic field to determine the nature of fluctuations on electron scales.
 
Read more ...

RAS Specialist Discussion suggestions invited

The RAS is inviting suggestions from Fellows of the RAS for Specialist Discussion meeting topics in the academic year 2019/20. These meetings are held on the second Friday of the month between October and May in a given academic year; the April meeting will be moved due to the second Friday being Good Friday. 

If you would like to organise one of these meetings, you can do so by submitting a proposal no longer than one A4 page. Geophysics proposals, including MIST science, should be sent to This email address is being protected from spambots. You need JavaScript enabled to view it., and the deadline is 1 March 2019.

Your proposal should include the title of the meeting; the names of the co-convenors (at least one of whom should be a RAS Fellow); the topics you intend to cover; the rationale (including timeliness); suggestions for invited speakers; and the preferred date for the meeting. More information, including detailed guidance, can be found on the RAS website.

 

RAS awards for 2019 announced

MIST Council would like to extend their congratulations to the 2019 Royal Astronomical Society award winners, as well as the recent AGU award winners. In particular, we congratulate the following MIST members recognised for their significant achievements:
  • Margaret Kivelson (UCLA) has been awarded the Gold Medal in Geophysics for a lifetime of outstanding achievement in understanding planetary magnetospheres and their connections to the planets they surround.
  • Tom Stallard (Leicester) has been awarded the Chapman medal in Geophysics for outstanding contributions to understanding planetary upper atmospheres and their interactions with their magnetospheres.
  • The Cluster Science and Operations Team have been awarded the Geophysics Group Award for their continued success ensuring the operations and scientific exploitation of the European Space Agency’s Cluster mission.
  • Mark Clilverd (British Antarctic Survey) has been awarded the James Dungey Lecture for their excellent research on energetic particle precipitation and its effects on the upper atmosphere and climate, and their vast experience delivering outstanding scientific talks to a broad range of audiences.
  • Julia Stawarz (Imperial College London) has been awarded the Basu United States Early Career Award for Research Excellence in Sun-Earth Systems Science for significant contributions in furthering understanding of collisional plasma turbulence and kinetic scale processes. 
MIST Council would also like to congratulate Fran Bagenal (Colorado), who has been awarded the AGU Van Allen Lecture for exceptional work on the understanding of planetary magnetospheres and outstanding contributions to planetary missions.

The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence

By Lloyd Woodham, Mullard Space Science Laboratory, University College London, UK

The solar wind contains turbulent fluctuations that are part of a continual cascade of energy from large scales down to smaller scales. At ion-kinetic scales, some of this energy is dissipated, resulting in a steepening in the spectrum of magnetic field fluctuations and heating of the ion velocity distributions, however, the specific mechanisms are still poorly understood. Understanding these mechanisms in the collisionless solar wind plasma is a major outstanding problem in the field of heliophysics research.

We use magnetic field and ion moment data from the MFI and SWE instruments on-board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyse the spectral properties of magnetic field fluctuations between 0.1 and 5.5 Hz over 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI ‘noise-floor’ using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilise Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton-cyclotron resonance scale, 1/kc, compared to the proton inertial length di and proton gyroscale ρi. This agreement is strongest when we consider periods where βi,perp ~ 1, and is consistent with a spectral break at di for βi,par « 1 and ρi for βi,perp » 1.

Histograms for 2012 of the estimated helicity onset frequency, fb, versus the three characteristic plasma scales, converted into frequencies using Taylor's hypothesis - fL represents fkc, fdi, and fρi, for each column respectively. The data used are for periods where 0.95 ≥ βi,perp ≥ 1.05. The colour-bar represents the column-normalised number of spectra. The black dashed lines represent fb = fL and similarly, the red dashed lines are fb = fL√2 and fb = fL√2, which give the resolution of the wavelet transform about the line fb = fL due to the finite width of the Morlet wavelet in frequency space. We see the best agreement between fb and fkc during these periods.

We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc and its absolute value reaches a maximum at ρi. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton-cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.

Woodham et al., 2018, The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales, ApJ, 856, 49, DOI: 10.3847/1538-4357/aab03d