MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

New mailing list for Python in space science

A new mailing list for space scientists who use Python has been founded. Angeline Burrell writes: 

There's been a recent push for more community python development and peer-to-peer support. Much of this is focused in the US at the moment, but as the results of the recent survey showed, MIST scientists are active or interested in python as well. If you would like to become involved, you can join the email list by contacting This email address is being protected from spambots. You need JavaScript enabled to view it..

The mailing list will comprise discussion as well as webinars/telecons from Python users, so the list should be useful for a range of abilities with Python. To join, please email This email address is being protected from spambots. You need JavaScript enabled to view it..

New MIST forum via Slack

In the days of yesteryear, there was a MIST forum provided for members of the MIST community to discuss things in a fashion more immediate and informal than email. It has been some years since the fabled MIST forum was a going concern, and in that time, the MIST Council has technically been in violation of the MIST Charter, which states that

MIST will provide an on-line forum to allow ongoing discussions and the formulation of ideas prior to public dissemination. This forum will be private, visible only to registered members; membership is restricted to active MIST scientists and is offered at the discretion of MIST council chair.

As a result of realising that the Charter mandates the maintenance of a forum, MIST Council have chosen to create a Slack workspace for the MIST community. If you would like to join, please This email address is being protected from spambots. You need JavaScript enabled to view it. specifying the email address you would like to use, and you will be invited to join.

MIST Council election results

The polls have closed, and Oliver Allanson (Reading) and John Coxon (Southampton) have been elected to MIST Council. The full results of 2018’s elections are as follows:

  • Oliver Allanson: 56 votes
  • John Coxon: 100 votes
  • Simon Pope: 27 votes
  • Samuel Wharton: 38 votes
  • Darren Wright: 40 votes

121 people cast two votes, and 19 cast a single vote, for a total of 140 responses. This is a turnout of 32.9% against the MIST mailing list, which comprises 426 eligible voters.

The chair of MIST Council, Ian McCrea, said:

I would like to congratulate John on his re-election to MIST Council and to congratulate Oliver on his election – we look forward to you joining us at our next meeting. To the unsuccessful candidates, I would like to say a sincere thank you for taking part and for your interest in being part of MIST Council. Obviously only two candidates can be successful in any given year, but there are elections every year and we hope that you will not be discouraged from standing again at a future date.

MIST Council would like to express their thanks and appreciation to Luke Barnard who is leaving MIST Council, and whose contributions over the last three years have been invaluable. We would also like to thank Q Stanley for handling the technical aspects of the election.

Astronomy/Solar System Advisory Panels call for priority projects

The Astronomy and Solar System Advisory Panels have been asked to identify a few priority projects, comprising 'large scale' (>£50M), ‘medium scale’ (£10-50M) and ‘small scale’ (<£10M) projects that can be started within the next 6 years. The outline business cases put forward by the community will be considered by STFC’s Executive Board and Science Board in September. We will then work with the community and UKRI to identify the best way of taking these ideas forward. 

Interested parties should summarize their ideas for priority projects using the template provided. Only those projects considered to be the most exciting and highest priority (by the Advisory Panels) will be asked to develop an outline business case. Please email your project summary to This email address is being protected from spambots. You need JavaScript enabled to view it. (Astronomy) or This email address is being protected from spambots. You need JavaScript enabled to view it. (Solar System). If your project has overlap with both astronomy and solar system, then please indicate this in your summary and send to both panels. The deadline is Wednesday 18 July 2018. If you have any questions regarding remit, format or submission, please feel free to contact the relevant Advisory Panel.

Jonathan Eastwood wrote, in his email to the MIST mailing list:

STFC has launched a consultation with research communities, designed to identify new world class science and technology proposals for potential future investment. The aim is to develop an ambitious portfolio of outline business cases for priority projects that relate to our strategic scientific and research infrastructure objectives, covering our remit, and driven by our communities… the scope of the projects is very broad – what is needed are exciting and ambitious scientific projects within the broad remit of astronomy and solar system science. Funds for estates and campus development are out of scope, and projects should not be an uplift to the grant/fellowship lines. This exercise is not part of the Evaluation of Astronomy which STFC will undertake in the Autumn (part of its assessment of the wider astronomy, particle and nuclear physics programmes), but projects identified here will be forwarded to that exercise to ensure information is not lost.

MIST Council would like to urge members of the MIST community to engage with this exercise in order to make sure that MIST science is well-represented in STFC strategy in the future.

Petition to eliminate harassment and bullying

MIST council is committed to fostering an open and inclusive scientific environment.

Many people will have seen the recent reports of bullying and harassment in Universities are becoming more and more widespread. In one of many steps to highlight the need for these actions to stop, an open letter and petition has been prepared by members of the wider community, including faculty from Imperial, UCL, and other UK and international institutions. This cross-institute example underlines the importance of eliminating harassment and bullying from the university and research environments. If you wish to sign the petition, you can find it by clicking here.

Our community is a big part of the RAS, which has a Code of Conduct and a Diversity, Equality and Inclusion Policy that we must adhere to:

  1. Promoting an inclusive environment for all.
    2. Promoting equality of opportunity.
    3. Welcoming applications from all backgrounds.
    4. Supporting and developing careers for all.
    5. Recruiting and promoting staff based on merit, rather than absence or presence of underrepresented characteristics.

We would strongly encourage our community to continue to participate in eradicating these issues from our scientific and every day lives.

Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission

By Julia E. Stawarz, Department of Physics, Imperial College London, UK.

In Stawarz et al. [2018], we examine large- and small-scale properties of three ion-scale flux ropes in Earth’s magnetotail. Evidence of variability in the flux rope orientations is found and an electron-scale vortex is discovered inside one of the flux ropes. 

Magnetic reconnection, which releases stored magnetic energy and converts it into particle motion, is a key driver of dynamics in Earth’s magnetosphere. However, it is still not fully understood how particles are accelerated and energy is partitioned both within the reconnection diffusion region, where particles decouple from the magnetic field, and within reconnection outflows. Helical magnetic fields known as flux ropes are one type of structure generated by reconnection and often observed within reconnection outflows [Borg et al., 2012; Eastwood & Kiehas, 2015; Sharma et al., 2008], which are both theoretically [Drake et al., 2006; Dahlin et al., 2017] and observationally [Chen et al., 2008] linked with particle energization. Previous observations have shown flux ropes can have substructure and intense electric fields [e.g., Eastwood et al., 2007], but the nature of these electric fields have not been previously determined. Recent high-time-resolution, mutispacecraft measurements with electron-scale separations from NASA’s Magnetospheric Multiscale (MMS) mission finally allow us to examine the detailed substructure of flux ropes.

The three closely spaced flux ropes examined in Stawarz et al. [2018] are observed near a reconnection diffusion region and have different orientations, indicating significant spatiotemporal variability and highlighting the three-dimensional nature of the overall reconnection event. One of the most intense electric fields in the event is found within one of the flux ropes and is linked with an electron vortex (Fig. 1). The intense electric field is perpendicular to the magnetic field and the vortex consists of electrons that are frozen-in and ions that are decoupled from the fields. The resulting difference in motion between the ions and electrons drifting in the electromagnetic fields drives a current perpendicular to the magnetic field that produces a small-scale magnetic enhancement. The presence of such vortices may contribute to accelerating particles, either through inferred parallel electric fields at the ends of the structure or the excitation of waves, and points to the necessity of better understanding the substructure of flux ropes in order to characterize particle energization in magnetic reconnection.

For more information, see our paper below:

Stawarz, J. E., J. P. Eastwood, K. J. Genestreti, R. Nakamura, R. E. Ergun, D. Burgess, J. L. Burch, S. A. Fuselier, D. J. Gershman, B. L. Giles, O. Le Contel, P.-A. Lindqvist, C. T. Russell, & R. B. Torbert (2018), Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission, Geophys. Res. Lett., 45. https://doi.org/10.1029/2018GL079095

page1image21874320

Figure 1: Overview of the electron vortex. (a) Electron-scale perturbation to the magnetic field with a 1s running average removed as observed by the four MMS spacecraft. (b,c) Components of the electric field perpendicular to the magnetic field as observed by the four MMS spacecraft. (d,e) Components of the current perpendicular to the magnetic field based on the curl of the magnetic field (black), moments of the ion and electron distribution functions (blue), and assuming the current is driven by electrons drifting in the electric and magnetic fields (red). (f)  Diagram of the electron vortex encountered inside of one of the flux ropes. The observed profiles of the electric field and current are consistent with the indicated trajectories through the structure.