MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Representing the MIST Community in award nominations

MIST Council has recently launched an effort to create an award nominations task force with the following aims:

  1. Actively contribute towards more equal representation and a diverse range of nominees for awards
  2. Recognise and promote the work of overlooked members of the community
  3. Provide a means for students and ECRs to gain experience in preparing an effective nomination package

The initial plan is to start by considering those awards given out by the Royal Astronomical Society. This is so there will be sufficient time to prepare nomination packages by the RAS deadline (July 2020), and the wide range of awards will allow us to consider the entire MIST community. The task force is spearheaded by Oliver Allanson, Jasmine Sandhu, and Maria-Theresia Walach.

This task force is inspired by Liz MacDonald, a heliophysicist at NASA’s Goddard Space Flight Center. Liz Macdonald organized the Nomination Task Force within AGU’s Space Physics and Aeronomy (SPA) section, which has been summarised in an article in Eos. We plan to work in a manner similar to that described in the article, as we believe that by having a community task force we will be able to achieve community-wide representation in a timely manner.

If you would like to be part of the task force then please sign-up using our Google Form by Friday 4th October. At this stage we are not soliciting for specific ideas for nominees. Instead we are seeking to gauge support and receive feedback. We would like to emphasise that all members of the MIST community are welcome, and indeed encouraged, to sign-up to to join this task force, from PhD student to Emeritus Professor.

New MIST Chair and Vice-Chair elected

Congratulations to John Coxon on becoming MIST Chair, and to Jasmine Sandhu on becoming MIST Vice-chair in a unanimous vote at a Council meeting last week.
 
MIST Council elects a new Chair whenever the previous Chair steps down, and in addition this year, the council has decided to elect a Vice-Chair for the first time.
 
On behalf of the MIST community, we would like to thank Ian McCrea for doing a superb job as Chair during his tenure on the Council.

EGU elections now open

The call for candidates for the EGU 2019 elections is currently open, with a deadline of 15 September 2019. The following roles are up for election: Union President, General Secretary, and the Division Presidents. More details about these roles and how you can nominate yourselves/colleagues can be found on the EGU website. 
 
MIST Council would like to emphasise that this is an excellent opportunity to contribute to and shape the field on an international scale, and we hope to see members from the MIST community putting themselves forward.

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Determination of the Equatorial Electron Differential Flux From Observations at Low Earth Orbit

By Hayley J. Allison, British Antarctic Survey / University of Cambridge, UK.

Electrons trapped on the terrestrial magnetic field form the Earth’s electron radiation belts. The dynamics of these structures can be examined using numerical models such as the BAS Radiation Belt Model. Recent work has highlighted the link between increases in the low energy seed population (tens to hundreds of keV electrons) and high-energy relativistic electron flux enhancements in the radiation belts. However, data on the seed population is limited to a few satellite missions.

Low earth orbit satellites, such as the Polar Operational Environmental Satellites (POES), rapidly sample the radiation belt region and provide a wealth of observations of the electron environment. Here we present a method to utilise this dataset to develop event-specific low energy boundary conditions for the British Antarctic Survey 3-D Radiation Belt Model. Such a method can supply realistic low energy boundary conditions for periods outside the Van Allen Probes mission, with a broad magnetic local time coverage. 

Using the low energy POES observations presents two main challenges. Firstly, the electron populations measured by the POES satellites are of low equatorial pitch angle. Secondly, the SEM-2 detector supplies integral electron flux, i.e. including all electrons from a lower energy limit up to a threshold. We used activity dependent equatorial pitch angle distributions, derived from Van Allen Probes observations, to map the POES observations to higher pitch angles and explore two methods for obtaining the flux at various electron energies (differential flux) from the integral flux measurements.

The resulting equatorial electron differential flux values were validated against MagEIS observations and showed an average agreement within a factor of 4 for L* > 3.7 when the assumption that electron flux decreased with increasing energy held (white areas in figure). Variations in the MagEIS flux tend to be reproduced in the converted POES dataset. Periods when the electron flux did not fall with energy (shaded grey) were primarily during quiet times when a lack of chorus wave activity meant that these low energy electrons were not accelerated to >900 keV energies.

For more information, please see the paper below:

Allison, H. J., Horne, R. B., Glauert, S. A., & Del Zanna, G. (2018). Determination of the equatorial electron differential flux from observations at low Earth orbit. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2018JA025786

Figure: Comparison of the Van Allen Probes Magnetic Electron Ion Spectrometer electron flux (black lines) at five L* values, for energies following a line of constant μ = 100 MeV/G and the electron flux determined from the POES observations using the AE-9 distributions for the integral flux to differential conversion (red line) and using the iterative approach (blue line). Grey regions show periods when the assumptions that the electron flux falls with increasing energy were violated.