MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

New MIST Chair and Vice-Chair elected

Congratulations to John Coxon on becoming MIST Chair, and to Jasmine Sandhu on becoming MIST Vice-chair in a unanimous vote at a Council meeting last week.
 
MIST Council elects a new Chair whenever the previous Chair steps down, and in addition this year, the council has decided to elect a Vice-Chair for the first time.
 
On behalf of the MIST community, we would like to thank Ian McCrea for doing a superb job as Chair during his tenure on the Council.

EGU elections now open

The call for candidates for the EGU 2019 elections is currently open, with a deadline of 15 September 2019. The following roles are up for election: Union President, General Secretary, and the Division Presidents. More details about these roles and how you can nominate yourselves/colleagues can be found on the EGU website. 
 
MIST Council would like to emphasise that this is an excellent opportunity to contribute to and shape the field on an international scale, and we hope to see members from the MIST community putting themselves forward.

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

Field line resonance in the Hermean magnetosphere: structure and implications for plasma distribution

by Matthew K. James (University of Leicester)

Mercury’s magnetosphere is the smallest and most active within our solar system, providing a unique laboratory for studying magnetospheric physics, where much can be ascertained using ultra low frequency (ULF) waves. ULF waves are a key mechanism in the transmission of energy, momentum and information around any magnetised plasma environment and have been observed in magnetospheres throughout the solar system (e.g. Mercury, Earth, Jupiter, Saturn and Ganymede). The frequencies and polarizations of a certain class of ULF waves, called magnetohydrodynamic shear Alfvén waves, can be used to diagnose the plasma mass loading within the magnetosphere. Shear Alfvén waves are transverse standing waves which exist on field lines bound at both ends to the planet in question, where the perturbed magnetic field is displaced azimuthally around the planetary magnetosphere. These waves are analogous to the waves standing on a guitar string, where only standing waves with discrete frequencies are supported. At Earth, these waves are often driven by solar wind forcing on the magnetosphere in a process known as field line resonance (FLR).

Until recently, it was thought that Mercury's magnetosphere was incapable of supporting such FLRs due to its relatively small size. Our study is the first statistical survey of FLRs in the Hermean magnetosphere; we used magnetic field observations from the spacecraft MESSENGER to detect 566 FLRs within the dayside of the magnetosphere. An example simulation of one such Hermean FLR is presented in the figure below, where the field oscillates with a combination of both the fundamental and second harmonic frequencies.The characteristics of these waves were used to determine plasma mass densities throughout the dayside magnetosphere. We also found that the structure of the resonant waves is highly asymmetric about the magnetic equator, with the largest field perturbations appearing north of the magnetic equator due to the offset of the magnetic dipole into the northern hemisphere of the planet.

For more information, please see the paper below:

James, M. K., Imber, S. M., Yeoman, T. K., & Bunce, E. J. (2019). Field line resonance in the Hermean magnetosphere: Structure and implications for plasma distribution. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA025920

Figure: Top left panel shows the power spectrum of the poloidal (red), toroidal (green) and compressional (blue) components of a FLR detected using MESSENGER. The majority of the wave power is seen in the toroidal component at 25 mHz (fundamental frequency), some toroidal wave power is also present at 60 mHz (second harmonic). The top right panel is an animation showing how the displacement of the field line (solid green line) might vary with time, compared to the unperturbed field (dashed green line), as it oscillates with a combination of the two detected frequencies at the location of this resonance. The bottom panel contains an animation showing how the electric (yellow) and magnetic perturbation (blue) fields would vary in time along the length of the field line, x.