Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

New MIST Chair and Vice-Chair elected

Congratulations to John Coxon on becoming MIST Chair, and to Jasmine Sandhu on becoming MIST Vice-chair in a unanimous vote at a Council meeting last week.
MIST Council elects a new Chair whenever the previous Chair steps down, and in addition this year, the council has decided to elect a Vice-Chair for the first time.
On behalf of the MIST community, we would like to thank Ian McCrea for doing a superb job as Chair during his tenure on the Council.

EGU elections now open

The call for candidates for the EGU 2019 elections is currently open, with a deadline of 15 September 2019. The following roles are up for election: Union President, General Secretary, and the Division Presidents. More details about these roles and how you can nominate yourselves/colleagues can be found on the EGU website. 
MIST Council would like to emphasise that this is an excellent opportunity to contribute to and shape the field on an international scale, and we hope to see members from the MIST community putting themselves forward.

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

Origin of the extended Mars radar blackout of September 2017

By Beatriz Sánchez-Cano (University of Leicester)

Several instrument operations, as well as communication systems with rovers at the surface, depend on radio signals that propagate throughout the atmosphere of Mars. This is the case for two radars currently operational in Mars’ orbit, sounding the ionosphere, surface and subsurface of the planet: The Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) on board Mars Express, which operates between 0.1 and 5.5 MHz, and the Shallow Radar (SHARAD) onboard the Mars Reconnaissance Orbiter, which operates at 20 MHz. However, both radars typically suffer from complete blackouts for several days (and even weeks) when solar storms hit Mars. It is thought that an increase in the electron density of the lower ionosphere below 100 km occurs, where even a small enhancement in ionization significantly increases the signal attenuation. In analogy with Earth, some works suggest that solar protons of tens of MeV can cause these absorption layers. However, at Mars, the current origin andlong duration is not known.

Sánchez-Cano et al. (2019) focused on both the MARSIS and SHARAD radar performances during a powerful solar storm that hit Mars in September 2017. The space weather event consisted of a X8.2-class flare emitted by the Active Region 12673 at the western limb of the solar disk on 10 September 2017 (Figure 1a). This was followed by solar energetic particles (ions and electrons) that arrived at Mars few hours later, as recorded by the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission (see Figure 1b,c). Based on MAVEN observations and numerical simulations of energetic electron precipitation, Sánchez-Cano et al. (2019) found that high energy electrons (and not protons) were the main ionization source, creating a dense layer of ions and electrons of magnitude ~1010 m-3 at ~90 km on the Martian nightside. For frequencies between 3 and 20 MHz, the peak absorption level is found at 70 km altitude, and the layer was composed mainly of O2+, the main Martian ionosphere component. This layer attenuated radar signals continuously for 10 days, preventing the radars from receiving any HF signals from the planetary surface across a planetary scale (Figure 1d). This contrasts with the typical few hour durations that these phenomena have at Earth.

This work highlights the need for careful assessments of radar performances for future operational systems, especially during space weather events. During these events, a good characterization of the low ionosphere is necessary for radar operations (and other instruments that use HF radio links), operational planning, as well as for communications with the Martian surface in the HF range.

For more information please see the paper below:

Sánchez‐Cano, B., Blelly, P.‐L., Lester, M., Witasse, O., Cartacci, M., Orosei, R., et al ( 2019). Origin of the extended Mars radar blackout of September 2017. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA026403

Figure 1: (a) MAVEN-EUV irradiance observations of wavelength 0.1-7 nm. (b) MAVEN-SEP ion differential flux spectra. (c) MAVEN-SEP electron differential flux spectra. (d) Each symbol denotes when MARSIS and SHARAD were in operation. Empty symbols designate the cases when the surface was observed, and filled symbols when was not observed. The exception are green diamonds that indicate the times when SHARAD observed a highly blurry surface.