MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

New MIST Chair and Vice-Chair elected

Congratulations to John Coxon on becoming MIST Chair, and to Jasmine Sandhu on becoming MIST Vice-chair in a unanimous vote at a Council meeting last week.
 
MIST Council elects a new Chair whenever the previous Chair steps down, and in addition this year, the council has decided to elect a Vice-Chair for the first time.
 
On behalf of the MIST community, we would like to thank Ian McCrea for doing a superb job as Chair during his tenure on the Council.

EGU elections now open

The call for candidates for the EGU 2019 elections is currently open, with a deadline of 15 September 2019. The following roles are up for election: Union President, General Secretary, and the Division Presidents. More details about these roles and how you can nominate yourselves/colleagues can be found on the EGU website. 
 
MIST Council would like to emphasise that this is an excellent opportunity to contribute to and shape the field on an international scale, and we hope to see members from the MIST community putting themselves forward.

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

Exploring Key Characteristics in Saturn’s Infrared Auroral Emissions Using VLT-CRIRES: H3+ Intensities, Ion Line-of-Sight Velocities, and Rotational Temperatures

by Nahid Chowdhury (University of Leicester)

Saturn’s aurorae are generated by interactions between high-energy charged particles and neutral atoms in the upper atmosphere. Infrared observations of auroral emissions make use of H3+ – a dominant hydrogen ion in Saturn’s ionosphere – that acts as a tracer of energy injected into the ionosphere.

We analysed observations taken in May 2013 of Saturn’s northern infrared auroral emissions with the Very Large Telescope in Chile using the CRIRES instrument. The use of adaptive optics, combined with the high spectral resolution of VLT-CRIRES (100,000), meant that this dataset offered an unprecedented spatially and spectrally resolved ground-based view of Saturn's infrared aurora. Using discrete H3+ emission lines, we derived dawn-to-dusk auroral emission intensity, ion line-of-sight velocity, and thermospheric temperature profiles, allowing us to probe the physical properties of Saturn’s polar atmosphere.

Our analysis showed an enhancement in the dawn-side auroral emission intensity, a common feature that is known to be linked with solar-wind compressions in the kronian magnetosphere, and the presence of a localised dark region in the aurora very close to the pole. The ion line-of-sight velocity profile revealed previously unknown smaller-scale structures in the ion flows. In particular, the ion flows near the centre of the pole (at position B in Figure 1) could be consistent with the behaviour of a relatively small ionospheric polar vortex whereby the ions are interrupting the general dawn-to-dusk trend in movement to instead adopt a very sharp shearing motion of ions first toward midnight and then almost immediately back toward noon. Our thermospheric temperature derivations also reveal a very subtle temperature gradient that increases from 350 K on the dawn-side of the pole to 389 K on the dusk-side.

This work has bought to light complex features in the behaviour of H3+ ions in Saturn’s upper atmosphere for the first time and highlights the need for additional analyses of two-dimensional scanned maps of Saturn’s auroral regions with a view to addressing some of the major outstanding questions surrounding Saturn’s thermosphere-ionosphere-magnetosphere interaction.

For more information, please see the paper below:

Chowdhury, M. N., Stallard, T. S., Melin, H., & Johnson, R. E. ( 2019). Exploring key characteristics in Saturn's infrared auroral emissions using VLT‐CRIRES: H3+intensities, ion line‐of‐sight velocities, and rotational temperatures. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083250.

 Plot showing the ion line-of-sight velocities and emission intensity as a function of colatitude.

Figure 1: The ion line-of-sight velocity and auroral emission intensity profiles are plotted as a function of co-latitude on the planet. Evidence for ion flows possibly consistent with the behaviour of an intriguing ionospheric polar vortex is adjacent to the area marked by the letter B, between approximately 0⁰ and 5⁰ co-latitude on the dawn-side of Saturn’s northern pole.