MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

ESA Voyager 2050

As was touched upon at the business lunch at NAM, ESA has launched the next in its series of milestones to shape long-term scientific planning, which is called Voyager 2050.
 
The next milestone in this process is a call for white papers, and this is outlined in detail here. In short, 20 page proposals are invited describing clear science questions and explaining how a space mission would address those questions. The deadline is 5 August 2019.
 
MIST Council hopes that members of the MIST community are planning to submit white papers to this call, and we would be very interested to hear from those who are planning to do this, or those who have already applied to be part of the Topical Teams also outlined in the call.

MIST Council election results

Following a call for nominations, Greg Hunt (Imperial College London) and Maria-Theresia Walach (Lancaster University) have been elected unopposed to MIST Council. We congratulate the two new MIST councillors!

We would also like to express our thanks and appreciation to both Ian McCrea and Sarah Badman who are leaving MIST Council, for their invaluable contributions and commitment to the MIST community.

SuperDARN Observations During Geomagnetic Storms, Geomagnetically Active Times, and Enhanced Solar Wind Driving

by Maria-Theresia Walach (Lancaster University)

At Earth, solar wind coupling drives large scale convection of field lines: antisunward flow of open field lines at high latitudes and the return flow of closed field lines at lower latitudes. This convection can be observed through measurements of the ionosphere, for example using measurements from SuperDARN, an international network of ground based radars, purposely built to study ionospheric convection. We use 7 years of Super Dual Auroral Radar (SuperDARN) data to study ionospheric convection during geomagnetic storms, geomagnetically active times and solar wind driven times. Using the most recent years of SuperDARN data allows us to study ionospheric convection at the mid-latitudes with a field-of-view spanning from the pole to 40 degrees of magnetic latitude.

In this study, we address a number of questions; for example, do we make similar SuperDARN observations during similar solar wind driving during nonstorm time as during storm time? Do SuperDARN observations change throughout the different phases of a storm? Where do we see the fastest flows with SuperDARN, and is it linked to the extent of latitudinal coverage from the radars? Does the latitudinal range of the convection, given, for example, by the return flow region, stay constant throughout a storm? We find that initial and recovery phases of geomagnetic storms show similar convection as enhanced solar wind driving when no geomagnetic storm occurs.

One of the key findings showing the change of regime between the initial, main, and recovery phase of the storm is shown in the figure: it shows the varying relationship between the flow reversal boundary (here FRB but otherwise known as the open-closed field line boundary or polar cap boundary) and the Heppner-Maynard boundary (here HMB, which corresponds to the lower latitude boundary where the ionospheric convection electric field approaches 0 kV). The blue line shows the line of best fit and the data distribution along it, indicates that the boundaries must expand and contract together, however, this happens at different rates during the different storm phases, producing an inflated return flow region during the main phase of the storm. 

For more information, please see the paper below:

Walach, M.‐T., & Grocott, A. ( 2019). SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026816

Figure: Colatitude location of the flow reversal boundary (FRB) against the Heppner‐Maynard boundary (HMB) during the three phases of geomagnetic storms (only using maps where n ≥ 200). The dashed black lines show the line of unity and the black contours correspond to where the normalized data point density corresponds to 0.005, 0.01, 0.015, and 0.02.