MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Representing the MIST Community in award nominations

MIST Council has recently launched an effort to create an award nominations task force with the following aims:

  1. Actively contribute towards more equal representation and a diverse range of nominees for awards
  2. Recognise and promote the work of overlooked members of the community
  3. Provide a means for students and ECRs to gain experience in preparing an effective nomination package

The initial plan is to start by considering those awards given out by the Royal Astronomical Society. This is so there will be sufficient time to prepare nomination packages by the RAS deadline (July 2020), and the wide range of awards will allow us to consider the entire MIST community. The task force is spearheaded by Oliver Allanson, Jasmine Sandhu, and Maria-Theresia Walach.

This task force is inspired by Liz MacDonald, a heliophysicist at NASA’s Goddard Space Flight Center. Liz Macdonald organized the Nomination Task Force within AGU’s Space Physics and Aeronomy (SPA) section, which has been summarised in an article in Eos. We plan to work in a manner similar to that described in the article, as we believe that by having a community task force we will be able to achieve community-wide representation in a timely manner.

If you would like to be part of the task force then please sign-up using our Google Form by Friday 4th October. At this stage we are not soliciting for specific ideas for nominees. Instead we are seeking to gauge support and receive feedback. We would like to emphasise that all members of the MIST community are welcome, and indeed encouraged, to sign-up to to join this task force, from PhD student to Emeritus Professor.

New MIST Chair and Vice-Chair elected

Congratulations to John Coxon on becoming MIST Chair, and to Jasmine Sandhu on becoming MIST Vice-chair in a unanimous vote at a Council meeting last week.
 
MIST Council elects a new Chair whenever the previous Chair steps down, and in addition this year, the council has decided to elect a Vice-Chair for the first time.
 
On behalf of the MIST community, we would like to thank Ian McCrea for doing a superb job as Chair during his tenure on the Council.

EGU elections now open

The call for candidates for the EGU 2019 elections is currently open, with a deadline of 15 September 2019. The following roles are up for election: Union President, General Secretary, and the Division Presidents. More details about these roles and how you can nominate yourselves/colleagues can be found on the EGU website. 
 
MIST Council would like to emphasise that this is an excellent opportunity to contribute to and shape the field on an international scale, and we hope to see members from the MIST community putting themselves forward.

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

SuperDARN Observations During Geomagnetic Storms, Geomagnetically Active Times, and Enhanced Solar Wind Driving

by Maria-Theresia Walach (Lancaster University)

At Earth, solar wind coupling drives large scale convection of field lines: antisunward flow of open field lines at high latitudes and the return flow of closed field lines at lower latitudes. This convection can be observed through measurements of the ionosphere, for example using measurements from SuperDARN, an international network of ground based radars, purposely built to study ionospheric convection. We use 7 years of Super Dual Auroral Radar (SuperDARN) data to study ionospheric convection during geomagnetic storms, geomagnetically active times and solar wind driven times. Using the most recent years of SuperDARN data allows us to study ionospheric convection at the mid-latitudes with a field-of-view spanning from the pole to 40 degrees of magnetic latitude.

In this study, we address a number of questions; for example, do we make similar SuperDARN observations during similar solar wind driving during nonstorm time as during storm time? Do SuperDARN observations change throughout the different phases of a storm? Where do we see the fastest flows with SuperDARN, and is it linked to the extent of latitudinal coverage from the radars? Does the latitudinal range of the convection, given, for example, by the return flow region, stay constant throughout a storm? We find that initial and recovery phases of geomagnetic storms show similar convection as enhanced solar wind driving when no geomagnetic storm occurs.

One of the key findings showing the change of regime between the initial, main, and recovery phase of the storm is shown in the figure: it shows the varying relationship between the flow reversal boundary (here FRB but otherwise known as the open-closed field line boundary or polar cap boundary) and the Heppner-Maynard boundary (here HMB, which corresponds to the lower latitude boundary where the ionospheric convection electric field approaches 0 kV). The blue line shows the line of best fit and the data distribution along it, indicates that the boundaries must expand and contract together, however, this happens at different rates during the different storm phases, producing an inflated return flow region during the main phase of the storm. 

For more information, please see the paper below:

Walach, M.‐T., & Grocott, A. ( 2019). SuperDARN observations during geomagnetic storms, geomagnetically active times, and enhanced solar wind driving. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA026816

Figure: Colatitude location of the flow reversal boundary (FRB) against the Heppner‐Maynard boundary (HMB) during the three phases of geomagnetic storms (only using maps where n ≥ 200). The dashed black lines show the line of unity and the black contours correspond to where the normalized data point density corresponds to 0.005, 0.01, 0.015, and 0.02.