MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Summer Science Exhibition 2020

The Royal Society is currently accepting proposals for the Summer Science Exhibition 2020, and the deadline for proposals is 10 September 2019. Further details on applying can be found here.
 
MIST Council would like to highlight that this is an excellent opportunity for cross-institutional collaborations! The MIST community is involved in a number of projects with a particularly timely aspect (e.g. Solar Orbiter and SMILE), which would be very appropriate to propose to the Royal Society. If you are currently preparing a proposal that you are happy to invite community members to join or you have an idea for a proposal that you would like to work with the community on, then please email This email address is being protected from spambots. You need JavaScript enabled to view it. with a short outline by 9 August 2019. We hope to then share these projects with the community to build support for the proposals and involve the wider community!
 
We will be discussing this further and sharing ideas on the #public-engagement channel on the MIST Slack workspace. If you aren’t on the MIST Slack workspace then click here for details.

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
 
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
 
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

ESA Voyager 2050

As was touched upon at the business lunch at NAM, ESA has launched the next in its series of milestones to shape long-term scientific planning, which is called Voyager 2050.
 
The next milestone in this process is a call for white papers, and this is outlined in detail here. In short, 20 page proposals are invited describing clear science questions and explaining how a space mission would address those questions. The deadline is 5 August 2019.
 
MIST Council hopes that members of the MIST community are planning to submit white papers to this call, and we would be very interested to hear from those who are planning to do this, or those who have already applied to be part of the Topical Teams also outlined in the call.

MIST Council election results

Following a call for nominations, Greg Hunt (Imperial College London) and Maria-Theresia Walach (Lancaster University) have been elected unopposed to MIST Council. We congratulate the two new MIST councillors!

We would also like to express our thanks and appreciation to both Ian McCrea and Sarah Badman who are leaving MIST Council, for their invaluable contributions and commitment to the MIST community.

The Impact of Radiation Belt Enhancements on Electric Orbit Raising

By Alexander Lozinski (British Antarctic Survey)

Electric orbit raising is a method of getting satellites into geostationary orbit (GEO) using low-thrust electric propulsion. A satellite intended for GEO is first placed into elliptical geostationary transfer orbit after separating from the launch vehicle. Following this, maneuvers are performed to raise the satellite to GEO. In conventional launches, chemical propulsion is used and this process requires a few days. With electrical thrusters, orbit raising can be performed more efficiently but requires a longer period (around 200 days) due to the lower thrust.

This method of raising satellites was introduced commercially in 2014 with the launch of the first all-electric satellites. Although the lower wet mass due to lack of chemical propellant reduces launch costs, the longer time required for the satellite to reach GEO leaves it exposed to irradiation from trapped protons of the Van Allen belts. This can cause degradation to solar cells via non-ionising displacement collisions.

Sustained enhancements in trapped proton flux can occur via trapping of solar energetic particles following a large geomagnetic disturbance. In this work, the solar cell degradation through time for a variety of real electric orbit raising scenarios was calculated in both a quiet and active environment, based on measurements taken by CRRES before/after the March 1991 storm. The trajectories of two previously launched satellites (EOR-1 and EOR-2) that underwent electric orbit raising is shown in the figure. The figure also shows the calculated remaining output power of the solar cell, P/P0, through time for both trajectories in an active environment. Reductions in P/P0 represent degradation to the solar cells.

A key finding is a large (up to 5%) increase in P/P0 degradation that occurs when electric orbit raising is performed in an enhanced radiation belt environment. However, the figure also demonstrates that some orbits are more at risk than others. Orbits with a higher initial apogee (e.g. EOR-2, red line) spend less time in regions of high proton flux, and experience less degradation. The work highlights the significant impacts of an enhanced environment on solar cell degradation, and identifies how this degradation can in part be mitigated with an appropriate choice of orbit and shielding.

For more information, please see the paper:

Lozinski, A. R., Horne, R. B., Glauert, S. A., Del Zanna, G., Heynderickx, D., & Evans, H. D. R. ( 2019). Solar cell degradation due to proton belt enhancements during electric orbit raising to GEO. Space Weather, 17. https://doi.org/10.1029/2019SW002213

The orbital trajectories are shown for two different satellites, and the corresponding solar cell degradation for the different orbits is also shown.

Figure caption: The left panel shows the remaining power, P/P0, as a function of time for two satellites. The right panels show trajectories of the two satellites over the first 200 mission days.