MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

A Summary of the SWIMMR Kick-Off Meeting

The kick-off event for the Space Weather Innovation, Measurement, Modelling and Risk Study (one of the Wave 2 programmes of the UKRI Strategic Priorities Fund) took place in the Wolfson Library of the Royal Society on Tuesday November 26th. Seventy-five people attended the event, representing a range of academic institutions, as well as representatives from industry, government and public sector research establishments such as the UK Met Office. 

The morning session of the meeting consisted of five presentations, introducing the programme and its relevance to government, the Research Councils and the Met Office, as well as describing details of the potential calls. The presentations were as follows:

  •  Prof John Loughhead (Chief Scientific Advisor to BEIS) - Space Weather Innovation, Measurement, Modelling and Risk Programme (a governmental perspective). The slides from Prof John Loughhead's talk are available here.
  • Prof Chris Mutlow (Director of STFC RAL Space) - SWIMMR: Project funded by the Strategic Priorities Fund (a perspective from STFC).  The slides from Prof Chris Mutlow's talk are available here.
  • Jacky Wood (Head of Business Partnerships at NERC) - Space Weather Innovation, Measurement, Modelling and Risk (SWIMMR) - A NERC perspective.  The slides from Jacky Wood's talk are available here.
  • Dr. Ian McCrea (Senior Programme Manager for SWIMMR) -  SWIMMR: Space Weather Innovation, Measurement, Modelling and Risk: A wave 2 programme of the UKRI Strategic Priorities Fund.  The slides from Dr Ian McCrea's talk are available here.
  • Mark Gibbs (Head of Space Weather at the UK Met Office) - SWIMMR (Met Office perspective and detailed description of the calls.  The slides from Mark Gibb's talk are available here.

During the lunch break, the Announcement of Opportunity for the five NERC SWIMMR calls was issued on the NERC web site.  The afternoon therefore began with a brief introduction by Jacky Wood to the NERC Announcement of Opportunity, and the particular terms and conditions which it contained.

The remainder of the afternoon session was spent in a Question and Answer session in which attendees were able to ask questions to the speakers about the nature of the programme and the potential timing of future calls, and finally to an informal discussion session, in which participants gathered into groups to discuss the opportunities for funding which had been outlined. 

2019 RAS Council elections

As you may have seen, the nominations for RAS Council are currently open with a deadline of 29 November. MIST falls under the “G” (Geophysics) category and there are up to 3 councillor positions and one vice-president position available. MIST Council strongly encourages interested members of the MIST community to consider standing for election.
 
Clare Watt (University of Reading) has kindly volunteered to be a point of contact for the community for those who may wish to talk more about being on council and what it involves. Clare is a councillor on RAS Council, with her term due to complete in 2020, and This email address is being protected from spambots. You need JavaScript enabled to view it..
 

 

Outcome of SSAP priority project review

From the MIST mailing list:

We are writing to convey the outcome of this year’s priority project “light touch” review, specifically with reference to those projects within the remit of SSAP. We would like to thank all the PIs that originally submitted ideas, and those who provided updates to their projects over the summer. SSAP strongly believe that all the projects submitted are underpinned by strong scientific drivers in the SSAP area.

The “light touch” review was undertaken with a unified approach by SSAP and AAP, considering factors that have led to priority project development (in STFC or other research councils) or new funding for priority projects (1/51 projects in the STFC remit) in the last 12 months. After careful discussion, it was agreed by SSAP and AAP not to select any project where the remit clearly overlaps with UKSA (i.e. space missions or TRL 4+), reflecting STFC’s focus on ground-based observations, science exploitation and TRL 0-3 development. Whilst in no way reflecting the excellence of the science, or community scientific wishes, this approach has resulted in some changes to the list of SSAP priority projects. However, now, unlike at the time of the original call, it is clear that such projects cannot move forwards without UKSA (financial) support, and such funds are already committed according to UKSA’s existing programme. SSAP remain strongly supportive of mission-led science in solar-system exploration, so SSAP have strongly recommended that the high-level discussions between UKSA and STFC continue with a view to supporting a clear joint priority projects call in future, more naturally suited to mission and bi-lateral opportunities.

The priority projects (and PIs) identified by SSAP for 2019/20 are:

  • Solar Atmospheric Modelling Suite (Tony Arber)
  • LARES1: Laboratory Analysis for Research into Extra-terrestrial Samples (Monica Grady)
  • EST: European Solar Telescope (Sarah Matthews)

SSAP requested STFC continue to work with all three projects to expand their community reach and continue to develop the business cases for future (new) funding opportunities. In addition, SSAP have requested that STFC explore ways in which the concept of two projects—“ViCE: Virtual Centres of Excellence Programme / MSEMM Maximising Science Exploitation from Space Science Missions”—can be combined and, with community involvement, generate new funding for science exploitation and maximising scientific return in solar-system sciences. Initially this consultation will occur between SSAP and STFC.

We would like to thank the community again for its strong support, and rapid responses on very short timescales. A further “light touch” review will occur in 2020, with a new call for projects anticipated in 2021. SSAP continue to appreciate the unfamiliar approach a “call for proposals with no funding attached” causes to the community and are continuing to stress to STFC that the community would appreciate clearer guidance and longer timescales in future priority project calls.

Yours sincerely,

Dr Helen Fraser on behalf of SSAP

The Global Network for the Sustainability In Space (GNOSIS)

The Global Network for the Sustainability In Space (GNOSIS) is an STFC Network+ with the goal of helping researchers within the Particle, Nuclear and Astrophysics areas to engage with researchers from other research councils and industry to study the near Earth space environment. For more details, visit the GNOSIS website or see this issue of the GNOSIS newsletter.

Over the next few years we expect a large increase in the number of satellites in Earth orbit. This will lead to unprecedented levels of space traffic much of which will end as debris. The aim of this network is to understand the debris populations and its impact on space traffic management with a view to enabling a safer environment.

The free GNOSIS lunch event will be held on 18 November 2019 at the British Interplanetary Society at Vauxhall, London, with a video link to the Royal Observatory Edinburgh, to facilitate participation from across the UK. Tickets can be obtained here.

GNOSIS will be producing a programme of meetings for both space operations specialists and subject matter novices and will be able to support the development of collaborative ideas through project and part graduate student funding. Details of our first workshop will be announced in the next month.

If you are an academic with no direct experience but have knowledge of areas such as observations, data analysis, simulation or even law, then register your interest on our website. If you are a currently working in the space sector or if you are just interested in the aims and goals of the network please also register your interest and get involved.

SWIMMR: A £19.9M programme of the UKRI Strategic Priorities Fund

Space Weather Instrumentation, Measurement, Modelling and Risk (SWIMMR) is a £19.9M programme of the UK Research and Innovation (UKRI) Strategic Priorities Fund.

MIST would like draw the attention of the research community to the potential opportunities which will become available as a result of this programme, which received final approval from the Department for Business, Energy and Industrial Strategy (BEIS) in August. The programme will run from now until March 2023 and is aimed at improving the UK’s capabilities for space weather monitoring and prediction. UKRI’s Strategic Priorities Fund provides a means for linking research council investment to governmental research priorities, hence the areas being emphasised in the programme reflect space weather threats to critical infrastructure, as reflected in the UK national risk register.

The programme will be delivered jointly by the STFC and NERC, mainly through open grant calls, but including some elements of commissioned work to be delivered through open competitive tenders. The first calls are expected to appear during the coming weeks. More information about the programme is available through the RAL Space website, and is forthcoming from the NERC web site.

To mark the official launch of the programme and provide more details of the planned activities, a kick-off meeting is being held in the Wolfson Library of the Royal Society on Tuesday 26 November 2019, from 10:30. Pre-registration is required for this event and can be done using this link. We hope that many of you will be able to attend.

Nuggets of MIST science, summarising recent MIST papers in a bitesize format.

If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!

AuroraWatch UK: An Automated Aurora Alert System

By Nathan A. Case, Department of Physics, Lancaster University, Lancaster, UK

The aurora borealis, though most often visible from more northerly latitudes, can occasionally be seen from the UK too. To help the public in their endeavour to see the northern lights from the UK, Lancaster University’s AuroraWatch UK issues alerts of when the aurora might be visible.

As the currents driving the aurora intensify, they produce disturbances to the local magnetic field. Since its inception in September 2000, AuroraWatch UK has been using its own suite of magnetometers to record these disturbances and issue real-time alerts about where in the UK an aurora might be seen.

We have now combined and standardised these alerts, using the latest alert algorithm to produce a 17-year dataset of UK aurora alerts. This dataset, along with the real-time data, is freely available for the community and the general public to use. We find that the alerts match well with the wider Kp index and the solar cycle.

Case, N. A., Marple, S. R., Honary, F., Wild, J. A., Billett, D. D., & Grocott, A. 2017. AuroraWatch UK: An automated aurora alert system. Earth and Space Science, 4, 746–754. https://doi.org/10.1002/2017EA000328

(left) A pie chart illustrating the number of hours spent at each AuroraWatch UK activity level, as a percentage of the total number of hours. (right) A histogram of the percentage of hours spent at an elevated alert level (i.e., yellow or above) per year. Also plotted are (solid line) the percentage of time per year where Kp ≥ 4 and (dashed line) the mean daily sunspot number per year (as a proxy for solar activity). The sunspot number is divided by 10 for scale.

Nugget: Are steady magnetospheric convection events prolonged substorms?

By Maria-Theresia Walach, Department of Physics and Astronomy, University of Leicester, Leicester, UK

The large scale convection of magnetic flux within the Earth’s magnetosphere due to reconnection, also known as the Dungey cycle [Dungey, 1961; 1963], is partially driven by the solar wind. During southward IMF reconnection at the subsolar magnetopause opens flux, which is then added to the magnetotail. Depending on the strength of solar wind-driving, the magnetospheric response can be delayed, episodic or prolonged, also known as “magnetospheric modes” [e.g. Pulkkinen et al., 2007].

Walach and Milan [2015] produced a statistical analysis of the event progression of steady magnetic convection events (intervals where the dayside reconnection is balanced by nightside reconnection [e.g. DeJong et al., 2008]), substorms (dominant dayside reconnection is followed by a delayed interval of dominant nightside reconnection [e.g. Baker et al., 1996]), and sawtooth events (signatures appearing to be quasi-periodic and quasi-global substorms [e.g. Henderson, 2004]). Superposed epoch analyses show that 58% of the studied steady magnetospheric convection events are part of prolonged substorms, where dayside reconnection is at first dominant. Then nightside reconnection is initiated as part of a substorm, but as the solar wind-driving continues the Earth’s magnetosphere then progresses into a state of steady magnetospheric convection, after which the substorm recovery continues.

Walach, M.-T., S. E. Milan (2015), J. Geophys. Res. Space Physics, 120, doi:10.1002/2014JA020631.

walach nugget

Superposed epoch analysis of substorms (red), sawtooth events (orange), steady magnetospheric convection events with preceding substorms (blue) and steady magnetospheric convection events without preceding substorms (green). The onset of the steady magnetospheric convection events with preceding substorms has been shifted to match the preceding substorm onset. The time of the event duration for the steady magnetospheric convection events in superposed epoch analyses in the right column has been normalised.

Nugget: Statistical characterisation of the growth and spatial scales of the substorm onset arc

By Nadine Kalmoni, UCL Mullard Space Science Laboratory, Holmbury St. Mary, Dorking, Surrey, UK

During southward IMF reconnection on the dayside leads to a build up of magnetic energy in the tail. As flux is piled into the tail the configuration becomes unstable leading to an explosive release in magnetic energy, termed a substorm. The rearrangement of the magnetic field is accompanied by highly dynamic substorm aurora.

The relatively high temporal and spatial resolution of the THEMIS mission All Sky Imagers have allowed recent observations of small scale azimuthal structures, auroral beads, which form in the minutes leading to auroral onset [e.g. Rae et al., 2009]. Conjugate observations in the Northern and Southern hemisphere suggest that the beads have a common magnetotail driver and are the ionospheric signature of a magnetospheric instability [Motoba et al., 2012].

Kalmoni et al. [2015] statistically analyse the growth and spatial scales of clear signatures of auroral beads observed in the minutes leading to substorm onset. The statistical observations are compared with the Shear-Flow Ballooning Instability (SFBI) [Voronkov et al., 1997] and the Cross-Field Current Instability [Lui, 2004 and references therein] which have both been proposed to play a role in substorm onset. Our observations conclude that the SFBI initiated in the near-Earth plasma sheet is the most likely explanation.

Kalmoni, N. M. E., I. J. Rae, C. E. J. Watt, K. R. Murphy, C. Forsyth, and C. J. Owen (2015), J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021470.

kalmoni nugget

Normalised growth rate as a function of spatial scale in comparison to (a) the Cross-Field Current Instability for inner-edge and mid-tail plasma sheet parameters and (b) the Shear-Flow Ballooning Instability for varying shear-flow widths.