Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

2019 Rishbeth prize winners announced

We are pleased to announce that the Rishbeth Prizes this year are awarded to Affelia Wibisono and Michaela Mooney , both of the Mullard Space Science Laboratory (UCL).
Affelia Wibisono wins the prize for the best MIST student talk, entitled “Jupiter’s X-ray Aurorae as seen by XMM-Newton concurrently with Juno”. Michaela wins the best MIST poster prize, for a poster entitled “Evaluating auroral forecasts against satellite observations”.
MIST Council would like to congratulate both Affelia and Michaela. As prize winners, Affelia and Michaela have been invited to write articles for Astronomy & Geophysics, which we look forward to reading.

Call for MIST/GEM Liaisons

There is a potential opening for a member of the MIST community to act as a liaison with the GEM (Geospace Environment Modelling) group. This will be an opportunity to act as a representative of the UK MIST community and inform GEM about relevant activities within the MIST community.

GEM liaisons will typically have the following responsibilities:

  1. Attend​​ a preponderance ​​of ​​GEM Steering ​​Committee ​​meetings​ ​at ​​summer​ ​workshop and​ ​mini-GEM​ ​​(June​ ​and​ ​December)
  2. Provide​​ written​​ annual​​ report​​ to​​ GEM Communications ​​Coordinator​​​ (by ​​April)
  3. Help ​​recruit ​​new​ ​GEM Steering​ ​Committee ​​members ​​​(as ​​needed)
  4. Provide ​​feedback​​ from​​ the​​ MIST community ​​and​​ share​​ with the GEM Chair/Vice​ ​Chair​ ​​(ongoing)

At this stage we would like to welcome any expressions of interest for this role from the community. If you are interested in being a GEM Liaison, then please This email address is being protected from spambots. You need JavaScript enabled to view it. including up to 100 words detailing why you would like to be a liaison and how your experience equips you for this role, and how often you would be able to attend GEM meetings.

If you have any further questions or would like more information about what the role would entail then please get in touch!

ESA Voyager 2050

As was touched upon at the business lunch at NAM, ESA has launched the next in its series of milestones to shape long-term scientific planning, which is called Voyager 2050.
The next milestone in this process is a call for white papers, and this is outlined in detail here. In short, 20 page proposals are invited describing clear science questions and explaining how a space mission would address those questions. The deadline is 5 August 2019.
MIST Council hopes that members of the MIST community are planning to submit white papers to this call, and we would be very interested to hear from those who are planning to do this, or those who have already applied to be part of the Topical Teams also outlined in the call.

MIST Council election results

Following a call for nominations, Greg Hunt (Imperial College London) and Maria-Theresia Walach (Lancaster University) have been elected unopposed to MIST Council. We congratulate the two new MIST councillors!

We would also like to express our thanks and appreciation to both Ian McCrea and Sarah Badman who are leaving MIST Council, for their invaluable contributions and commitment to the MIST community.

UK Space Agency call for nominations for the position of Chair of the Science Programme Advisory Committee

The UK Space Agency (UKSA) is seeking a new Chair for the Science Programme Advisory Committee (SPAC). The position of Chair of the Science Programme Advisory Committee will become vacant on 1 July 2019.

The UK Space Agency welcomes applications from the UK space science community. The full position and person specifications are on the Government's website.


How well can we estimate Pedersen conductance from the THEMIS white-light all-sky cameras?

by Mai Mai Lam (University of Southampton) 

The substorm cycle comprises the loading and explosive release of magnetic energy into the Earth system, causing complex and brilliant auroral light displays as large as a continent. Within one substorm, over 50% of the total solar wind energy input to the Earth system is estimated to be converted to Joule heating of the atmosphere.Such Joule heating is highly variable, and difficult to measure for individual substorms. One quantity that we need to measure in order to calculate the Joule heating is the distribution of Pedersen conductance. Ideally this should be done across the very large range of latitudes and local times that substorms expand into. Pedersen conductance can be examined with high accuracy by exploiting ground-based incoherent scatter radar data, but only on the scale of a few kilometres.

The THEMIS all-sky imagers form a network of nonfiltered cameras that spans North America. Previous results have shown that the optical intensity of a single ground camera with a green filter can be used to find a reasonable estimate of Pedersen conductance.  Therefore we asked whether THEMIS white-light cameras could measure the conductance as precisely as radars can, but at multiple locations across a continent. We found that the conductance estimated by one THEMIS camera has an uncertainty of 40% compared to the radar estimates on a spatial scale of 10 – 100 km and a timescale of 10 minutes. In addition, our results indicate that the THEMIS camera network could identify regions of high and low Pedersen conductance on even finer spatio-temporal scales. This means we can use the THEMIS network, and its data archive, to learn more about how much substorms heat up the atmosphere and how complicated and changeable this behaviour is.

For more information please see the paper below:

“How well can we estimate Pedersen conductance from the THEMIS white‐light all‐sky cameras?”, M. M. Lam , M. P. Freeman,  C. M. Jackman,  I. J. Rae, N. M. E. Kalmoni,  J. K. Sandhu,  C. Forsyth. Journal of Geophysical Research. https://doi.org/10.1029/2018JA026067

Figure caption: (a) Absolute difference between camera- and radar-derived 1 min Pedersen conductance (black solid) and the effect of different temporal smoothing (coloured broken). (b) As for a, but for the relative difference between camera- and radar-derived Pedersen conductance (normalised to the radar conductance). (c) Comparison of camera-derived and radar-derived Pedersen conductance values for days with different geomagnetic conditions as indicated by Kp: 1 min radar values (blue crosses), 1 min radar values smoothed over 10 min (red diamonds), and 1 min values derived from camera intensity (black squares).

The magnetopause booms like a drum due to impulses

by Martin Archer (Queen Mary University of London)

The abrupt boundary between a magnetosphere and the surrounding plasma, the magnetopause, has long been known to support surface waves which travel down the flanks. However, just like a stone thrown in a pond causes ripples which spread out in all directions, impulses acting on our magnetopause should also cause waves to travel towards the magnetic poles. It had been proposed that the ionosphere might result in a trapping of surface wave energy on the dayside as a standing wave or eigenmode of the magnetopause surface. This mechanism should act as a global source of magnetopause dynamics and ultra-low frequency waves that might then drive radiation belt and auroral interactions.

While many potential impulsive drivers are known, no direct observational evidence of this process had been found to date and searches for indirect evidence had proven inconclusive, casting doubt on the theory. However, Archer et al. (2019) show using all five THEMIS spacecraft during their string-of-pearls phase that this mechanism does in fact occur.

Figure: THEMIS observations and a schematic of the magnetopause standing wave.

They present observations of a rare isolated fast plasma jet striking the magnetopause. This caused motion of the boundary and ultra-low frequency waves within the magnetosphere at well-defined frequencies. Through comparing the observations with the theoretical expectations for several possible mechanisms, they concluded that the jet excited the magnetopause surface eigenmode – like how hitting a drum once reveals the sounds of its normal modes.

Hear the signals as audible sound here: https://www.youtube.com/watch?v=mcG03NBJf-s

For more information please see the paper below:

‘Direct Observations Of A Surface Eigenmode Of The Dayside Magnetopause’. M.O. Archer, H. Hietala, M.D. Hartinger, F. Plaschke, V. Angelopoulos. Nature Communications. | https://doi.org/10.1038/s41467-018-08134-5

Detecting the Resonant Frequency of the Magnetosphere with SuperDARN

by Samuel J. Wharton (University of Leicester)

The Earth’s magnetosphere is constantly being disturbed by ultralow frequency (ULF) waves. These waves transport energy and momentum through the system and can form standing waves on magnetospheric field lines. These standing waves have a resonant frequency which depends on the magnetic field strength and plasma distribution along the field line. The waves result in perturbations in the magnetic field and plasma in the ionosphere. These occur at the resonant frequency and can be directly observed with instruments on the ground. Being able to measure the resonant frequency can provide valuable information about the state of the magnetosphere.

Traditionally, this can be done by applying a cross-phase spectral technique to ground-based magnetometers. It works by finding the frequency where the phase change with latitude is most rapid. This occurs at the local resonant frequency.

The Super Dual Auroral Radar Network (SuperDARN) is a global consortium of 35 radars that observe radio waves backscattered from the ionosphere. The radars detect ULF waves by observing the movements of ionospheric plasma.

For the first time, we have applied the cross-phase technique to SuperDARN. These radars have a much greater spatial resolution and coverage and provide more detailed information than can be achieved with magnetometers alone. In this study, we have used some notable techniques, such as developing a Lomb-Scargle cross-phase technique for uneven data and exploiting an improved fitting procedure Reimer et al. (2018).

We have been able to apply these methods to several examples and validate the results with ground magnetometer estimations. When available, ionospheric heaters can be used to reduce the uncertainty in the backscatter location. However, the majority of SuperDARN data does not have a heater in the field of view and observes ‘natural scatter’. Figure 1 shows an example of the technique applied to natural scatter. The red band in Figure 1e lies at the resonant frequency. Hence, we can measure the resonant frequencies with and without an ionospheric heater.

This study demonstrates that SuperDARN can be used as a tool to monitor resonant frequencies and therefore the plasma distribution of the magnetosphere. This opens up a new application for the SuperDARN radars.

For more information, please see the paper below:

Wharton, S. J., Wright, D. M., Yeoman, T. K., & Reimer, A. S. (2019). Identifying ULF wave eigenfrequencies in SuperDARN backscatter using a Lomb-Scargle cross-phase analysis. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2018JA025859

Figure 1: This shows an example of the local resonant frequency being measured by SuperDARN. (a) and (b) show range-time-intensity plots for beams 12 and 15 of the Þykkvibær radar. (c) shows filtered line-of-sight velocities for range gates 10 and 9 on those beams respectively. (d) The cross-phase spectrum for data in (c). (e) The cross-phase spectrum from (d) smoothed.

Current Density in Saturn’s Equatorial Current Sheet: Cassini Magnetometer Observations

by Carley J. Martin (Lancaster University)

Saturn’s rapidly rotating magnetosphere forms an equatorial current sheet that is prone to both periodic (i.e. flapping, breathing [see MIST nugget by Arianna Sorba]) and aperiodic movements (i.e. Martin & Arridge [2017]).

Although the current density of the sheet structure has been discussed by many previous authors, the current density in the middle to outer magnetosphere has not been fully explored. To this end we analysed aperiodic wave movements of Saturn’s current sheet, determined using Cassini’s magnetometer observations. The data were fitted to a deformed current sheet model in order to estimate the magnetic field value just outside of the current sheet, plus the scale height of the current sheet itself. These values were then used to calculate the height integrated current density.

We find a local time asymmetry in the current density, similar to the relationship seen at Jupiter, with a peak in current density of 0.04 A/m at ~ 3 SLT (Saturn Local Time). We then used the divergence of the azimuthal and radial current densities to infer the field-aligned currents that flow out from the equator pre-noon and enter the equator pre-midnight, similar to the Region-2 current at Earth. This current closure could enhance auroral emission in the pre-midnight sector by up to 11 kR.

Overall, the results provide important information into the asymmetries of the current sheet, and the characteristics of the current sheet suggest important field-aligned current systems that shape Saturn’s auroral emissions.

For more information, please see the paper below:

Martin, C. J., & Arridge, C. S. (2019). Current density in Saturn's equatorial current sheet: Cassini magnetometer observations. Journal Geophysical Researcher: Space Physics, 124, 279–292. https://doi.org/10.1029/2018JA025970

Figure: Divergence of height-integrated perpendicular current density (which infers the field-aligned current density). The coloured blocks show the average value of the divergence projected onto the X-Y plane in KSM (Kronocentric Solar Magnetospheric) coordinates. A range of magnetopause positions is shown using Arridge et at. (2006) along with the orbits of Titan (20 RS) and Rhea (9 RS), all shown in grey.


Observations of magnetic reconnection in Earth’s bow shock

by Imogen Gingell (Imperial College London)

The bow shock is a thin transition between super-sonic solar wind flows and sub-sonic flows in the Earth’s magnetosheath, during which the plasma is rapidly compressed and heated. In space plasmas, particle collisions cannot provide sufficient energy dissipation to slow the flow to sub-sonic speeds. Instead, nonlinear, electromagnetic plasma processes must be responsible.

Recent simulations (hybrid and fully kinetic particle-in-cell) have shown that current sheets and magnetic islands may be generated within the bow shock’s thin transition region (see Gingell et al 2017). This implies that magnetic reconnection, i.e. a localised change in the topology of the magnetic field, may be among the nonlinear processes responsible for heating in the shock transition layer. However, reconnection is not currently included in shock models.

Using data provided by NASA’s Magnetospheric Multiscale mission (MMS), we have now detected signatures of reconnection occurring at current sheets embedded in the shock. These signatures include a reversal of the magnetic field direction over ion inertial scales and a coincident super-Alfvénic jet of electrons corresponding the outflow from the reconnection site (see Fig 1). The increase in the electron temperature is consistent with previous observations of reconnection at the magnetopause. However, the lack of an ion jet or heating is similar to recent observations within the magnetosheath.

Now that we have confirmed that reconnection can occur within the bow shock, we must assess the broader impact of reconnection on heating and particle acceleration at shocks, explore the evolution of reconnecting structures as they convect downstream, and determine the parameter regime over which shock reconnection can occur.

For more information, please see the paper below:

Gingell, I., Schwartz, S. J., Eastwood, J. P., Burch, J. L., Ergun, R. E., Fuselier, S., et al. (2019). Observations of magnetic reconnection in the transition region of quasi‐parallel shocks. Geophysical Research Letters, 46. https://doi.org/10.1029/2018GL081804

Fig 1. (i) schematic of the structure of a reconnecting current sheet, showing magnetic field (black), current density (green), electron outflow jets (blue) and spacecraft trajectory for the observed event (red). (ii) observations of a current sheet in the bow shock, showing (a) magnetic field, (b) electron and ion bulk velocities, and (c) electron ion temperatures.