MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Nominations are open for MIST Council

We are very pleased to open nominations for MIST Council. There are three positions available (detailed below), and elected candidates would join Georgios Nicolaou, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 31 May.

Council positions open for nomination

2 x MIST Councillor - a three year term (2024 - 2027). Everyone is eligible.

MIST Student Representative - a one year term (2024 - 2025). Only PhD students are eligible. See below for further details.

About being on MIST Council

If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk. Two of our outgoing councillors, Beatriz and Sophie, have summarised their experiences being on MIST Council below.

Beatriz Sanchez-Cano (MIST Councillor):

"Being part of the MIST council for the last 3 years has been a great experience personally and professionally, in which I had the opportunity to know better our community and gain a larger perspective of the matters that are important for the MIST science progress in the UK. During this time, I’ve participated in a number of activities and discussions, such as organising the monthly MIST seminars, Autumn MIST meetings, writing A&G articles, and more importantly, being there to support and advise our colleagues in cases of need together with the wonderful council members. MIST is a vibrant and growing community, and the council is a faithful reflection of it."

Sophie Maguire (MIST Student Representative):

"Being the student representative for MIST council has been an amazing experience. I have been part of organizing conferences, chairing sessions, and writing grant applications based on the feedback MIST has received. From a wider perspective, MIST has helped to grow and support my professional networks which in turn, directly benefits my PhD work as well. I would encourage any PhD student to apply for the role of MIST Student Representative and I would be happy to answer any questions or queries you have about the role."

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 31 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:

  1. Name
  2. Position (Councillor/Student Rep.)
  3. Nomination Statement (150 words max including a bit about the nominee and focusing on your reasons for nominating. This will be circulated to the community in the event of a vote.)

MIST Council details

  • Sophie Maguire, University of Birmingham, Earth's ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Georgios Nicolaou, MSSL, solar wind plasma - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Beatriz Sanchez-Cano, University of Leicester, Mars plasma - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Jasmine Kaur Sandhu, University of Leicester, Earth’s inner magnetosphere - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Andy Smith, Northumbria University, Space Weather - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Maria-Theresia Walach, Lancaster University, Earth’s ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Emma Woodfield, British Antarctic Survey, radiation belts - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it. 

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Acceleration of Electrons by Whistler-Mode Hiss Waves at Saturn

By Emma Woodfield (British Antarctic Survey)

Whistler-mode hiss waves are well known for causing losses of energetic electrons from the radiation belts at the Earth through wave-particle interactions. The result of the interactions of charged particle with plasma waves, whether energy is transferred from wave to particle or vice-versa, is dependent on many factors including the background plasma conditions. In Saturn’s magnetosphere there is a torus of charged particles, the primary source of this plasma torus is neutral water particles emitted from the moon Enceladus which are then ionised. The combination of pressure, ambipolar electric field, centrifugal and gravitational forces on this moon sourced plasma creates a regime where density is highest near the magnetic equator and notably lower at higher latitudes. Consequently, the ratio of plasma frequency to electron gyrofrequency frequently falls below one at higher latitudes. This also coincides with the region where hiss mode waves are observed and our simulations show that this very low ratio leads hiss waves at Saturn to accelerate electrons rather than scattering them out of the radiation belt. This new finding has important implications for the radiation belt dynamics at Saturn since hiss waves are strong and frequently observed.

 

Another result of the high latitude occurrence of hiss (> 25 degrees) is that only electrons which bounce a good distance along the magnetic field lines will encounter these particular wave-particle interactions. Therefore, the energy increase in the electrons due to the hiss waves is only seen in these particles. We can describe how far along the magnetic field a particle will reach using the equatorial pitch angle, which is the angle between the particle velocity and the magnetic field at the magnetic equator. An electron with an equatorial pitch angle of 90 degrees is confined to the equator whereas one of 0 or 180 degrees will reach all the way down to the planet in different hemispheres. The result of the hiss wave interactions is to drive the pitch angle distributions of the electrons towards a “butterfly shape” with peaks at low (and very high) equatorial pitch angle reflecting the hiss interactions at high latitudes in both hemispheres. The strength and speed of the interaction also varies with electron energy, the figure shows how our simulations of the electron pitch angle distributions at different L-shells (radial distance along the magnetic equator of a magnetic field line) progress after one Earth day for three typical radiation belt energies. These simulations consider only the effect of the hiss waves to isolate their effect from radial diffusion and transport and any other wave-particle interactions or collisional losses. Highly anisotropic pitch angle distributions (with the peak at lowest and highest pitch angle) are apparent in all three energies in even this relatively short timescale simulation.

Equatorial pitch angle distributions from 2D model runs at a given L-shell after 24 hours with a resolution of 0.1L. Each run considers the energy and pitch angle diffusion, no radial diffusion or radial transport is included. Each pitch angle distribution is normalised to the flux value at 90 degrees. (a) initial condition for all energies, (b,c,d) flux at 0.4, 1.0 and 3.0 MeV respectively.         From: Emma Woodfield - BAS  Sent: 27 January 2022 13:50 To: Walach, Maria <m.walach@lancaster.ac.uk> Subject: RE: [External] MIST Nugget   Hi Maria,   Will do 😊   There’s a BAS news twitter – I’ll double check the twitter handle.   Thanks Emma   From: Walach, Maria <m.walach@lancaster.ac.uk>  Sent: 27 January 2022 12:36 To: Emma Woodfield - BAS <emmwoo@bas.ac.uk> Subject: Re: [External] MIST Nugget   Hi Emma,   Great!   Could you prepare one within the next 1-2 weeks?    I also advertise new nuggets via the MIST twitter page. Please let me know if you have any twitter account(s) that you would like me to tag in the post or any suggested wordings.   Thanks, Maria   On 27 Jan 2022, at 12:29, Emma Woodfield - BAS <emmwoo@bas.ac.uk> wrote:   This email originated outside the University. Check before clicking links or attachments. Hi Maria,   That was a quick spot – I haven’t even checked the online version myself yet! :-)     Yes happy to do a nugget, when would you like it by?   Kind regards Emma   From: Walach, Maria <m.walach@lancaster.ac.uk>  Sent: 27 January 2022 12:28 To: Emma Woodfield - BAS <emmwoo@bas.ac.uk> Subject: MIST Nugget   Hi Emma,   I hope all is well with you!   I am contacting you on MIST Council business, due to your recent article (https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL096213?campaign=wolacceptedarticle). MIST nuggets are short, 1-2 paragraphs (100 - 300 words) accompanied by a figure/animation that describes the importance and some key result/aspect of your work, as well as a caption for the figure and any references.. For some examples please see http://www.mist.ac.uk/nuggets. They are aimed to be understandable for the general MIST audience - at the level of a 1st year PhD student, with a focus on clear language and the wider impact of the results.   We would like to invite you to contribute to the series of MIST nuggets and provide a short nugget on your recently published work. Hopefully this should not take much time to write, and it is a great way to advertise your work to the wider MIST community! Please would you be able to let me know whether or not you will be able to contribute at your earliest convenience.   Many thanks,    Maria On behalf of MIST council -------------------------------------------------- Maria-Theresia Walach Senior Research Associate Space and Planetary Physics Group Physics Department Lancaster University Lancaster LA1 4YB UK   This email and any attachments are intended solely for the use of the named recipients. If you are not the intended recipient you must not use, disclose, copy or distribute this email or any of its attachments and should notify the sender immediately and delete this email from your system. UK Research and Innovation (UKRI) has taken every reasonable precaution to minimise risk of this email or any attachments containing viruses or malware but the recipient should carry out its own virus and malware checks before opening the attachments. UKRI does not accept any liability for any losses or damages which the recipient may sustain due to presence of any viruses.   

Figure Caption: Equatorial pitch angle distributions from 2D model runs at a given L-shell after 24 hours with a resolution of 0.1L. Each run considers the energy and pitch angle diffusion, no radial diffusion or radial transport is included. Each pitch angle distribution is normalised to the flux value at 90 degrees. (a) initial condition for all energies, (b,c,d) flux at 0.4, 1.0 and 3.0 MeV respectively.

 

See full paper for details:

Woodfield, E. E., Glauert, S. A., Menietti, J. D., Horne, R. B., Kavanagh, A. J., & Shprits, Y. Y. (2022). Acceleration of electrons by whistler-mode hiss waves at Saturn. Geophysical Research Letters, 49, e2021GL096213. https://doi.org/10.1029/2021GL096213

Publication URL: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL096213