Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Applied Sciences special issue: Dynamical processes in space plasmas


Applied Sciences is to publish a special issue on the topic of dynamical processes in space plasmas which is being guest edited by Georgious Nicolaou. Submissions are welcome until 31 March 2021, and submission instructions for authors can be found on the journal website. For general questions, This email address is being protected from spambots. You need JavaScript enabled to view it..

A Summary of the SWIMMR Kick-Off Meeting

The kick-off event for the Space Weather Innovation, Measurement, Modelling and Risk Study (one of the Wave 2 programmes of the UKRI Strategic Priorities Fund) took place in the Wolfson Library of the Royal Society on Tuesday November 26th. Seventy-five people attended the event, representing a range of academic institutions, as well as representatives from industry, government and public sector research establishments such as the UK Met Office. 

The morning session of the meeting consisted of five presentations, introducing the programme and its relevance to government, the Research Councils and the Met Office, as well as describing details of the potential calls. The presentations were as follows:

  •  Prof John Loughhead (Chief Scientific Advisor to BEIS) - Space Weather Innovation, Measurement, Modelling and Risk Programme (a governmental perspective). The slides from Prof John Loughhead's talk are available here.
  • Prof Chris Mutlow (Director of STFC RAL Space) - SWIMMR: Project funded by the Strategic Priorities Fund (a perspective from STFC).  The slides from Prof Chris Mutlow's talk are available here.
  • Jacky Wood (Head of Business Partnerships at NERC) - Space Weather Innovation, Measurement, Modelling and Risk (SWIMMR) - A NERC perspective.  The slides from Jacky Wood's talk are available here.
  • Dr. Ian McCrea (Senior Programme Manager for SWIMMR) -  SWIMMR: Space Weather Innovation, Measurement, Modelling and Risk: A wave 2 programme of the UKRI Strategic Priorities Fund.  The slides from Dr Ian McCrea's talk are available here.
  • Mark Gibbs (Head of Space Weather at the UK Met Office) - SWIMMR (Met Office perspective and detailed description of the calls.  The slides from Mark Gibb's talk are available here.

During the lunch break, the Announcement of Opportunity for the five NERC SWIMMR calls was issued on the NERC web site.  The afternoon therefore began with a brief introduction by Jacky Wood to the NERC Announcement of Opportunity, and the particular terms and conditions which it contained.

The remainder of the afternoon session was spent in a Question and Answer session in which attendees were able to ask questions to the speakers about the nature of the programme and the potential timing of future calls, and finally to an informal discussion session, in which participants gathered into groups to discuss the opportunities for funding which had been outlined. 

2019 RAS Council elections

As you may have seen, the nominations for RAS Council are currently open with a deadline of 29 November. MIST falls under the “G” (Geophysics) category and there are up to 3 councillor positions and one vice-president position available. MIST Council strongly encourages interested members of the MIST community to consider standing for election.
Clare Watt (University of Reading) has kindly volunteered to be a point of contact for the community for those who may wish to talk more about being on council and what it involves. Clare is a councillor on RAS Council, with her term due to complete in 2020, and This email address is being protected from spambots. You need JavaScript enabled to view it..


Outcome of SSAP priority project review

From the MIST mailing list:

We are writing to convey the outcome of this year’s priority project “light touch” review, specifically with reference to those projects within the remit of SSAP. We would like to thank all the PIs that originally submitted ideas, and those who provided updates to their projects over the summer. SSAP strongly believe that all the projects submitted are underpinned by strong scientific drivers in the SSAP area.

The “light touch” review was undertaken with a unified approach by SSAP and AAP, considering factors that have led to priority project development (in STFC or other research councils) or new funding for priority projects (1/51 projects in the STFC remit) in the last 12 months. After careful discussion, it was agreed by SSAP and AAP not to select any project where the remit clearly overlaps with UKSA (i.e. space missions or TRL 4+), reflecting STFC’s focus on ground-based observations, science exploitation and TRL 0-3 development. Whilst in no way reflecting the excellence of the science, or community scientific wishes, this approach has resulted in some changes to the list of SSAP priority projects. However, now, unlike at the time of the original call, it is clear that such projects cannot move forwards without UKSA (financial) support, and such funds are already committed according to UKSA’s existing programme. SSAP remain strongly supportive of mission-led science in solar-system exploration, so SSAP have strongly recommended that the high-level discussions between UKSA and STFC continue with a view to supporting a clear joint priority projects call in future, more naturally suited to mission and bi-lateral opportunities.

The priority projects (and PIs) identified by SSAP for 2019/20 are:

  • Solar Atmospheric Modelling Suite (Tony Arber)
  • LARES1: Laboratory Analysis for Research into Extra-terrestrial Samples (Monica Grady)
  • EST: European Solar Telescope (Sarah Matthews)

SSAP requested STFC continue to work with all three projects to expand their community reach and continue to develop the business cases for future (new) funding opportunities. In addition, SSAP have requested that STFC explore ways in which the concept of two projects—“ViCE: Virtual Centres of Excellence Programme / MSEMM Maximising Science Exploitation from Space Science Missions”—can be combined and, with community involvement, generate new funding for science exploitation and maximising scientific return in solar-system sciences. Initially this consultation will occur between SSAP and STFC.

We would like to thank the community again for its strong support, and rapid responses on very short timescales. A further “light touch” review will occur in 2020, with a new call for projects anticipated in 2021. SSAP continue to appreciate the unfamiliar approach a “call for proposals with no funding attached” causes to the community and are continuing to stress to STFC that the community would appreciate clearer guidance and longer timescales in future priority project calls.

Yours sincerely,

Dr Helen Fraser on behalf of SSAP

The Global Network for the Sustainability In Space (GNOSIS)

The Global Network for the Sustainability In Space (GNOSIS) is an STFC Network+ with the goal of helping researchers within the Particle, Nuclear and Astrophysics areas to engage with researchers from other research councils and industry to study the near Earth space environment. For more details, visit the GNOSIS website or see this issue of the GNOSIS newsletter.

Over the next few years we expect a large increase in the number of satellites in Earth orbit. This will lead to unprecedented levels of space traffic much of which will end as debris. The aim of this network is to understand the debris populations and its impact on space traffic management with a view to enabling a safer environment.

The free GNOSIS lunch event will be held on 18 November 2019 at the British Interplanetary Society at Vauxhall, London, with a video link to the Royal Observatory Edinburgh, to facilitate participation from across the UK. Tickets can be obtained here.

GNOSIS will be producing a programme of meetings for both space operations specialists and subject matter novices and will be able to support the development of collaborative ideas through project and part graduate student funding. Details of our first workshop will be announced in the next month.

If you are an academic with no direct experience but have knowledge of areas such as observations, data analysis, simulation or even law, then register your interest on our website. If you are a currently working in the space sector or if you are just interested in the aims and goals of the network please also register your interest and get involved.

The Broadband Excitation of 3-D Alfvén Resonances (FLRs) in a MHD Waveguide

By Tom Elsden, Department of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK

Field line resonance (FLR) has been the theoretical mechanism used to explain a myriad of ground and spaced based observations of ultra low frequency (ULF) waves in Earth’s magnetosphere. FLR is a plasma physics process whereby energy from a global oscillation (fast mode) can be transferred to local oscillations along magnetic field lines (Alfvén mode), where the fast mode frequency matches the local Alfvén frequency. This process was first studied analytically where the plasma was only inhomogeneous in the radial direction (mathematically 1D) [Southwood, 1974, Chen and Hasegawa, 1974] and has since been extended both analytically and numerically to more complicated systems [e.g. Lee and Lysak, 1989, Chen and Cowley, 1989, Wright and Thompson, 1994, Russell and Wright, 2010].

A feature of FLRs in complicated geometries, such as a dipole, is that the poloidal (radial) and toroidal (azimuthal) Alfvén frequencies are different [e.g. Radoski, 1967]. This infers that the location where the FLR will occur is dependent on the polarisation of the Alfvén wave. This property has recently been explored theoretically in 3D [Wright and Elsden, 2016] and forms the basis of this current work. The magnetosphere is asymmetric and therefore requires an understanding of FLR in 3D. We look at wave coupling in an excessively asymmetric waveguide in order to study the physics clearly.

The figure below taken from Elsden and Wright [2018], displays cuts in the equatorial plane from a 3D MHD waveguide simulation using a 2D dipole magnetic field geometry. In each panel, the x-axis is the radial direction (α) and the y-axis the azimuthal direction (β), and the density varies with azimuth. The left panel shows the energy density (dimensionless units) integrated along a field line, showing an accumulation of energy along curved resonance paths, where the FLR polarisation is between poloidal and toroidal. The middle and right panels show the square root of the kinetic energy in the equatorial plane, revealing ridges which develop by phase mixing in 3D. We find that with a broadband driver it is the natural fast waveguide modes which drive FLRs. Such modes are fairly insensitive to the form of the driver, and hence the resonances are seen at the same locations for many different driving stimuli. This means that the resonances are a property of the medium, and can hence be used as a seismological tool to infer properties of the equilibrium. Finally, the key point is that traditionally FLRs are regarded as having a strictly toroidal polarisation. However, here we have shown in 3D that they can have other polarisations.

Elsden, T. and A. N. Wright (2018), The Broadband Excitation of 3D Alfvén Resonances in a MHD Waveguide, J. Geophys. Res. Space Physics, 123, doi:10.1002/2017JA025018

Figure: Left: Energy density integrated along a field line. Black dashed line represents a theoretical prediction of the main FLR location. Middle: Square root of the the kinetic energy in the equatorial plane. Right: Same as middle but annotated for use in other plots in the paper.