MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Announcement of New MIST Councillors.

We are very pleased to announce the following members of the community have been elected unopposed to MIST Council:

  • Rosie Johnson (Aberystwyth University), MIST Councillor
  • Matthew Brown (University of Birmingham), MIST Councillor
  • Chiara Lazzeri (MSSL, UCL), Student Representative

Rosie, Matthew, and Chiara will begin their terms in July. This will coincide with Jasmine Kaur Sandhu, Beatriz Sanchez-Cano, and Sophie Maguire outgoing as Councillors.

The current composition of Council can be found on our website, and this will be amended in July to reflect this announcement (https://www.mist.ac.uk/community/mist-council).

Nominations are open for MIST Council

We are very pleased to open nominations for MIST Council. There are three positions available (detailed below), and elected candidates would join Georgios Nicolaou, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 31 May.

Council positions open for nomination

2 x MIST Councillor - a three year term (2024 - 2027). Everyone is eligible.

MIST Student Representative - a one year term (2024 - 2025). Only PhD students are eligible. See below for further details.

About being on MIST Council

If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk. Two of our outgoing councillors, Beatriz and Sophie, have summarised their experiences being on MIST Council below.

Beatriz Sanchez-Cano (MIST Councillor):

"Being part of the MIST council for the last 3 years has been a great experience personally and professionally, in which I had the opportunity to know better our community and gain a larger perspective of the matters that are important for the MIST science progress in the UK. During this time, I’ve participated in a number of activities and discussions, such as organising the monthly MIST seminars, Autumn MIST meetings, writing A&G articles, and more importantly, being there to support and advise our colleagues in cases of need together with the wonderful council members. MIST is a vibrant and growing community, and the council is a faithful reflection of it."

Sophie Maguire (MIST Student Representative):

"Being the student representative for MIST council has been an amazing experience. I have been part of organizing conferences, chairing sessions, and writing grant applications based on the feedback MIST has received. From a wider perspective, MIST has helped to grow and support my professional networks which in turn, directly benefits my PhD work as well. I would encourage any PhD student to apply for the role of MIST Student Representative and I would be happy to answer any questions or queries you have about the role."

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 31 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:

  1. Name
  2. Position (Councillor/Student Rep.)
  3. Nomination Statement (150 words max including a bit about the nominee and focusing on your reasons for nominating. This will be circulated to the community in the event of a vote.)

MIST Council details

  • Sophie Maguire, University of Birmingham, Earth's ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Georgios Nicolaou, MSSL, solar wind plasma - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Beatriz Sanchez-Cano, University of Leicester, Mars plasma - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Jasmine Kaur Sandhu, University of Leicester, Earth’s inner magnetosphere - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Andy Smith, Northumbria University, Space Weather - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Maria-Theresia Walach, Lancaster University, Earth’s ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Emma Woodfield, British Antarctic Survey, radiation belts - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it. 

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission

By Julia E. Stawarz, Department of Physics, Imperial College London, UK.

In Stawarz et al. [2018], we examine large- and small-scale properties of three ion-scale flux ropes in Earth’s magnetotail. Evidence of variability in the flux rope orientations is found and an electron-scale vortex is discovered inside one of the flux ropes. 

Magnetic reconnection, which releases stored magnetic energy and converts it into particle motion, is a key driver of dynamics in Earth’s magnetosphere. However, it is still not fully understood how particles are accelerated and energy is partitioned both within the reconnection diffusion region, where particles decouple from the magnetic field, and within reconnection outflows. Helical magnetic fields known as flux ropes are one type of structure generated by reconnection and often observed within reconnection outflows [Borg et al., 2012; Eastwood & Kiehas, 2015; Sharma et al., 2008], which are both theoretically [Drake et al., 2006; Dahlin et al., 2017] and observationally [Chen et al., 2008] linked with particle energization. Previous observations have shown flux ropes can have substructure and intense electric fields [e.g., Eastwood et al., 2007], but the nature of these electric fields have not been previously determined. Recent high-time-resolution, mutispacecraft measurements with electron-scale separations from NASA’s Magnetospheric Multiscale (MMS) mission finally allow us to examine the detailed substructure of flux ropes.

The three closely spaced flux ropes examined in Stawarz et al. [2018] are observed near a reconnection diffusion region and have different orientations, indicating significant spatiotemporal variability and highlighting the three-dimensional nature of the overall reconnection event. One of the most intense electric fields in the event is found within one of the flux ropes and is linked with an electron vortex (Fig. 1). The intense electric field is perpendicular to the magnetic field and the vortex consists of electrons that are frozen-in and ions that are decoupled from the fields. The resulting difference in motion between the ions and electrons drifting in the electromagnetic fields drives a current perpendicular to the magnetic field that produces a small-scale magnetic enhancement. The presence of such vortices may contribute to accelerating particles, either through inferred parallel electric fields at the ends of the structure or the excitation of waves, and points to the necessity of better understanding the substructure of flux ropes in order to characterize particle energization in magnetic reconnection.

For more information, see our paper below:

Stawarz, J. E., J. P. Eastwood, K. J. Genestreti, R. Nakamura, R. E. Ergun, D. Burgess, J. L. Burch, S. A. Fuselier, D. J. Gershman, B. L. Giles, O. Le Contel, P.-A. Lindqvist, C. T. Russell, & R. B. Torbert (2018), Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission, Geophys. Res. Lett., 45. https://doi.org/10.1029/2018GL079095

page1image21874320

Figure 1: Overview of the electron vortex. (a) Electron-scale perturbation to the magnetic field with a 1s running average removed as observed by the four MMS spacecraft. (b,c) Components of the electric field perpendicular to the magnetic field as observed by the four MMS spacecraft. (d,e) Components of the current perpendicular to the magnetic field based on the curl of the magnetic field (black), moments of the ion and electron distribution functions (blue), and assuming the current is driven by electrons drifting in the electric and magnetic fields (red). (f)  Diagram of the electron vortex encountered inside of one of the flux ropes. The observed profiles of the electric field and current are consistent with the indicated trajectories through the structure.