By Sandra Chapman (University of Warwick)
The daily sunspot number record available since 1818 is used to map solar activity over 18 solar cycles to a standardised 11 year cycle or ‘clock’. No two solar cycles are the same, but using the Hilbert transform we are able to standardise the solar activity cycle. The clock reveals that the transitions between quiet and active periods in solar activity are sharp. Once the clock is constructed from sunspot observations it can be used to order observations of solar activity and space weather. These include occurrence of solar flares seen in X-ray by the GOES satellites and F10.7 solar radio flux that tracks solar coronal activity. These are all drivers of space weather on the Earth, for which the longest record is the aa index based on magnetic field measurements going back over 150 years. All these observations show the same sharp switch on and switch off times of activity. Once past switch on/off times are obtained from the clock, the occurrence rate of extreme events when the sun is active or quiet can be calculated, and we find only 1-3% of extreme space storms over the last 150 years occurred in the quiet period of the solar cycle clock.
Figure: Multiple cycles of the irregular, but roughly 11 year cycle of solar and geomagnetic activity is mapped onto a regular solar cycle clock with increasing time read clockwise. Circles indicate the cycle maxima (red), minima (green) and terminators (blue). Measures of solar activity are the daily F10.7 solar radio flux (blue), and GOES X-class, M-Class and C-class solar flare occurrence plotted (red, blue and green scaled histograms). Extreme space weather events at earth seen in the aa geomagnetic index are shown as black dots arranged on concentric circles where increasing radius indicates aa values which in any given day exceeded 100, 200, 300, 400, 500, 600nT, large events appear as ‘spokes’. The clock identified when activity switches on at the terminator and switches off at the pre-terminator (blue lines).
For more information please see:
2020). Quantifying the solar cycle modulation of extreme space weather. Geophysical Research Letters, 47, e2020GL087795. https://doi.org/10.1029/2020GL087795
, , , & (