MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Announcement of New MIST Councillors.

We are very pleased to announce the following members of the community have been elected unopposed to MIST Council:

  • Rosie Johnson (Aberystwyth University), MIST Councillor
  • Matthew Brown (University of Birmingham), MIST Councillor
  • Chiara Lazzeri (MSSL, UCL), Student Representative

Rosie, Matthew, and Chiara will begin their terms in July. This will coincide with Jasmine Kaur Sandhu, Beatriz Sanchez-Cano, and Sophie Maguire outgoing as Councillors.

The current composition of Council can be found on our website, and this will be amended in July to reflect this announcement (https://www.mist.ac.uk/community/mist-council).

Nominations are open for MIST Council

We are very pleased to open nominations for MIST Council. There are three positions available (detailed below), and elected candidates would join Georgios Nicolaou, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 31 May.

Council positions open for nomination

2 x MIST Councillor - a three year term (2024 - 2027). Everyone is eligible.

MIST Student Representative - a one year term (2024 - 2025). Only PhD students are eligible. See below for further details.

About being on MIST Council

If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk. Two of our outgoing councillors, Beatriz and Sophie, have summarised their experiences being on MIST Council below.

Beatriz Sanchez-Cano (MIST Councillor):

"Being part of the MIST council for the last 3 years has been a great experience personally and professionally, in which I had the opportunity to know better our community and gain a larger perspective of the matters that are important for the MIST science progress in the UK. During this time, I’ve participated in a number of activities and discussions, such as organising the monthly MIST seminars, Autumn MIST meetings, writing A&G articles, and more importantly, being there to support and advise our colleagues in cases of need together with the wonderful council members. MIST is a vibrant and growing community, and the council is a faithful reflection of it."

Sophie Maguire (MIST Student Representative):

"Being the student representative for MIST council has been an amazing experience. I have been part of organizing conferences, chairing sessions, and writing grant applications based on the feedback MIST has received. From a wider perspective, MIST has helped to grow and support my professional networks which in turn, directly benefits my PhD work as well. I would encourage any PhD student to apply for the role of MIST Student Representative and I would be happy to answer any questions or queries you have about the role."

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 31 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:

  1. Name
  2. Position (Councillor/Student Rep.)
  3. Nomination Statement (150 words max including a bit about the nominee and focusing on your reasons for nominating. This will be circulated to the community in the event of a vote.)

MIST Council details

  • Sophie Maguire, University of Birmingham, Earth's ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Georgios Nicolaou, MSSL, solar wind plasma - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Beatriz Sanchez-Cano, University of Leicester, Mars plasma - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Jasmine Kaur Sandhu, University of Leicester, Earth’s inner magnetosphere - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Andy Smith, Northumbria University, Space Weather - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Maria-Theresia Walach, Lancaster University, Earth’s ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Emma Woodfield, British Antarctic Survey, radiation belts - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it. 

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Solar Energetic Particle Events Detected in the Housekeeping Data of the European Space Agency's Spacecraft Flotilla in the Solar System

By Beatriz Sánchez-Cano (University of Leicester)

Space Weather is the discipline that aims at understanding and predicting the state of the Sun, interplanetary medium and its impact on planetary environments. One source of Space Weather is Solar Energetic Particles (SEPs), which are emitted by the Sun and enhance the radiation and particles that flow in space. Predicting the motion of these particles is important but difficult as we need good satellite coverage of the entire inner Solar System, and only a limited number of spacecraft have the necessary instrumentation. Thanks to the European Space Agency flotilla in the solar system, that is, Venus Express, Mars Express, ExoMars-Trace Gas Orbiter, Rosetta, BepiColombo, Solar Orbiter, and Gaia, we performed a feasibility study of the detection of SEP events using engineering sensors in the main body of the spacecraft that were originally placed there to monitor its health during the mission. We explored how much scientific information we can get from these engineering sensors, such as the timing and duration of an SEP impacting the spacecraft, or the minimum energy of those particles to trigger a detection. The results of this study have the potential of providing a good network of solar particle detections at locations where no scientific observations are available.

Example of a solar energetic particle (SEP) event detected by Rosetta with housekeeping data (black line). Three different energy ranges of the SEP event are also shown in colours.
Example of a solar energetic particle (SEP) event detected by Rosetta with housekeeping data (black line). Three different energy ranges of the SEP event are also shown in colours.

Please see publication for further details: Sánchez-Cano, B., Witasse, O., Knutsen, E. W., Meggi, D., Viet, S., Lester, M., et al. (2023). Solar energetic particle events detected in the housekeeping data of the European Space Agency's spacecraft flotilla in the Solar System. Space Weather, 21, e2023SW003540. https://doi.org/10.1029/2023SW003540

Newcomb-Benford Law as a generic flag for changes in the derivation of long-term solar terrestrial physics timeseries

By Sandra Chapman (University of Warwick), A. M. Bendito Nunes (undergraduate student, University of Warwick), and J. Gamper (undergraduate student, University of Warwick)

Space weather can have significant impact over a wide range of technological systems including power grids, aviation, satellites and communications. In common with studies across the geophysical sciences, space weather modelling and prediction requires long term space and ground-based parameters and indices that necessarily aggregate multiple observations, the details of which can change with time. The Newcomb-Benford law (NBL) specifies the relative occurrence rates of the leading digit in a sequence of numbers arising from multiple operations under certain conditions, the first non-zero digit in a number is more likely to be 1 than 2, 2 than 3, and so on. In this first application to space weather parameters and indices, we show that the NBL can detect changes in the instrumentation and calibration underlying long-term geophysical records, solely from the processed data records. In space weather, as in other fields such as climate change, it is critical to be able to verify that any observed secular change is not a result of changes in how the data record is constructed. As composite indices are becoming more widespread across the geosciences, the NBL may provide a generic data flag indicating changes in the constituent raw data, calibration or sampling method.

 

Figure 1: The plot shows the NBL goodness of fit parameter for magnetic field observed since 1981 by a series of satellites upstream of the earth. The NBL fit parameter shows a clear decrease when more sophisticated satellites, Wind. and later ACE, became available. 

The joint 1st authors of this paper contributed to this research during their final year undergraduate Physics project at Warwick University

See paper for full details: 

A. M. Benedito Nunes, J. Gamper, S. C. Chapman, M. Friel, J. Gjerloev, Newcomb-Benford Law as a generic flag for changes in the derivation of long-term solar terrestrial physics timeseries, RAS Techniques and Instruments (2023) https://doi.org/10.1093/rasti/rzad041

Predicting Swarm Equatorial Plasma Bubbles via Machine Learning and Shapley Values

By Sachin Reddy (UCL Mullard Space Science Laboratory)

In the nightside ionosphere, plumes of low-density plasma known as Equatorial Plasma Bubbles (EPBs) are prone to form. EPBs can disrupt GNSS signals which depend on quiet ionospheric conditions, but the day-to-day variability of bubbles has made predicting them a considerable challenge. In this study we present AI Prediction of EPBs (APE), a machine learning model that accurately predicts the Ionospheric Bubble Index (IBI) on Swarm. IBI identifies EPBs by correlating (R2) a simultaneous change in the current density and magnetic field.

APE is XGBoost regressor that is trained on data from 2014-2022. It performs well across all metrics, exhibiting a skill, association, and root mean squared error score of 0.96/1, 0.98/1 and 0.08/0 respectively. APE performs best post-sunset, in the American/Atlantic sector, around the equinoxes, and when solar activity is high. This is promising because EPBs are most likely to occur during these periods.

Shapley Value analysis reveals that F10.7 is the most important feature, whilst latitude is the least. Bespoke indices may be required to fully capture the effects of geomagnetic activity which is known to both enhance and suppress EPB formation. The Shapley analysis also reveals that low solar activity, active geomagnetic conditions, and the Earth-Sun perihelion all contribute to an increased EPB likelihood. To the best of our knowledge, this is the first time this exact combination of features has been linked to bubble detection. This showcases the ability of Shapley values to enable new insights into EPB climatology and predictability.

Four predictions made by APE and the feature values that drove it. Positive values (right pointing arrows) increase EPB likelihood, whereas negative values (left pointing arrows) decrease likelihood. All predictions occur around the Earth-Sun perihelion and Kp > 2. The predicted value is f(x) and all are > 0.7, which means they are EPBs. This is the first time this unique combination has been linked to increased EPB occurrence, showcasing the ability of ML techniques to enable new scientific insight.

See full paper for details: Reddy, S. A., Forsyth, C., Aruliah, A., Smith, A., Bortnik, J., Aa, E., et al. (2023). Predicting swarm equatorial plasma bubbles via machine learning and Shapley values. Journal of Geophysical Research: Space Physics, 128, e2022JA031183. https://doi.org/10.1029/2022JA031183

Global dynamical network of the spatially correlated Pc2 wave response for the 2015 St. Patrick's Day storm

By Shahbaz Chaudhry (University of Warwick)

Space weather poses a risk to infrastructure including satellites and power systems. A key challenge within space weather is predicting the magnetospheric response during storms. In order to understand the dynamics of geomagnetic storms, we can study Pc waves which are field line resonances along closed field lines in the inner magnetosphere. Recently, SuperMAG and Intermagnet have released new second resolution data which allows higher frequency Pc2 (T=5-10s) waves to be resolved and studied globally. Generation mechanisms for Pc2 waves (which we focus on in this paper) include ion-cyclotron resonance at equatorial regions of the magnetosphere.

To better understand geomagnetic storms, we for the first time build a Pc2 wave dynamical network using the full set of 100+ ground-based magnetometer stations. A network graphs the connections (edges) between entities (nodes). An example includes airline networks, where the nodes are airports and edges are flight paths. Here we build dynamical networks where nodes and edges are time varying. Network edges will be built upon the cross-correlation between Pc2 waves observed magnetic field at pairs of ground-based magnetometer stations.

Our first results are a study of the 2015 St. Patrick's Day storm for an 8 hour time window around onset. Using this storm we have identified network parameters and have shown that these track the distinct phases of the storm in terms of spatial coherence of Pc2 wave activity. We show that the network responds to distinct phase of the storm, including southward or northward IMF and does not just track the average Pc2 power. Using these network parameters we can perform statistical studies across many storms and quantitatively benchmark space weather models with observations. In addition, this analysis can be easily extended to other Pc bands which have different generation mechanisms within the magnetosphere.

Network snapshot at storm onset for the northern magnetic field component comprising 81 stations. Throughout panels (a)-(d), four groups of connections are shown, all connections (green), superimposed are connections spanning MLT<4 h (orange), north-south connections spanning MLT<4 h (purple), and pseudo-chains (blue). Panel (d) shows connections plotted in geomagnetic coordinates. Panels (a) and (b) show connections plotted in geographic coordinates and limited to the southern and northern hemispheres respectively. The global degree distribution for the given network snapshot is shown in (b) with colors corresponding to network edges in panels (a), (b), and (d).
Figure showing network snapshot at storm onset for the northern magnetic field component comprising 81 stations. Throughout panels (a)-(d), four groups of connections are shown, all connections (green), superimposed are connections spanning MLT<4 h (orange), north-south connections spanning MLT<4 h (purple), and pseudo-chains (blue). Panel (d) shows connections plotted in geomagnetic coordinates. Panels (a) and (b) show connections plotted in geographic coordinates and limited to the southern and northern hemispheres respectively. The global degree distribution for the given network snapshot is shown in (b) with colours corresponding to network edges in panels (a), (b), and (d).

 

See paper for full details: Chaudhry, S.Chapman, S. C.Gjerloev, J., & Beggan, C. D. (2023). Global dynamical network of the spatially correlated Pc2 wave response for the 2015 St. Patrick's Day stormJournal of Geophysical Research: Space Physics128, e2022JA031175. https://doi.org/10.1029/2022JA031175

Formation and Motion of Horse Collar Aurora Events

By Gemma Bower (University of Leicester)

Horse collar aurora (HCA) are an auroral phenomena that occurs under northward IMF where the polar cap becomes teardrop shaped due to the poleward motion of the dusk and dawn sectors of the auroral oval. Their formation has been linked to prolonged periods of dual-lobe reconnection (DLR). This occurs when the same IMF magnetic field line reconnects in both the northern and southern hemisphere lobes when the IMF clock angle is small. This leads to the closure of magnetic flux at the dayside magnetopause. In order to further study the motion of HCA a list of HCA events previously identified in UV images captured by the Special Sensor Ultraviolet Spectrographic Imager (SSUSI) instrument on-board the Defense Meteorological Satellite Program (DMSP) spacecraft F16, F17 and F18 has been used. Events that have concurrent 630.0 nm all-sky camera (ASC) data from the Redline Geospace Observatory (REGO) Resolute Bay site are studied in more detail, making use of the higher cadence of the ASC images compared to DMSP/SSUSI. 11 HCA events are classified based on the IMF conditions at the end of the event. A southward turning of the IMF ends five events, two end with positive By dominated IMF and four with negative By dominance. The figure shows one of the studied events that ends with a southward turning of the IMF. Under positive (negative) By the arcs move duskward (dawnward) in the northern hemisphere with the opposite true in the southern hemisphere. Under a southward turning the arcs move equatorward. These results are in agreement with previously proposed models. Understanding the evolution of HCA will allow DLR to be studied in more detail.

Figure 1: One of the studied events. The top panels show the keograms of the ASC and the relevant interplanetary magnetic field (IMF) data for the event. The first row of the columns shows the DMSP/IDM flows with an inset showing the IMF clock angle at the time of the SSUSI image. The second row is the LBHs SSUSI image on a log scale. The third row is the SSUSI image centred on the Taloyoak ASC station with the available ASC images projected on top. The final rows are the ASC images with north located at the top of each image plotted on a log scale. The UT given is the time of the ASC image and the most poleward point of the DMSP pass.
Figure 1: One of the studied events. The top panels show the keograms of the ASC and the relevant interplanetary magnetic field (IMF) data for the event. The first row of the columns shows the DMSP/IDM flows with an inset showing the IMF clock angle at the time of the SSUSI image. The second row is the LBHs SSUSI image on a log scale. The third row is the SSUSI image centred on the Taloyoak ASC station with the available ASC images projected on top. The final rows are the ASC images with north located at the top of each image plotted on a log scale. The UT given is the time of the ASC image and the most poleward point of the DMSP pass.


Please see paper for full details: Bower, Bower, G. E., Milan, S. E., Paxton, L. J., Spanswick, E., & Hairston, M. R. (2023). Formation and motion of horse collar aurora events. Journal of Geophysical Research: Space Physics, 128, e2022JA031105. https://doi.org/10.1029/2022JA031105