Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

SSAP roadmap update

The STFC Solar System Advisory Panel (SSAP) is undertaking a review of the "Roadmap for Solar System Research", to be presented to STFC Science Board later this year. This is expected to be a substantial update of the Roadmap, as the last full review was carried out in 2012, with a light-touch update in 2015.

The current version of the SSAP Roadmap can be found here.

In carrying out this review, we will take into account changes in the international landscape, and advances in instrumentation, technology, theory, and modelling work. 

As such, we solicit your input and comments on the existing roadmap and any material we should consider in this revision. This consultation will close on Wednesday 14 July 2021 and SSAP will try to give a preliminary assessment of findings at NAM.

This consultation is seeking the view of all members of our community and we particularly encourage early career researchers to respond. Specifically, we invite:

Comments and input on the current "Roadmap for Solar System Research" via the survey by clicking here.

Short "white papers" on science investigations (including space missions, ground-based experimental facilities, or computing infrastructure) and impact and knowledge exchange (e.g. societal and community impact, technology development). Please use the pro-forma sent to the MIST mailing list and send your response to This email address is being protected from spambots. You need JavaScript enabled to view it..

Quo vadis interim board


A white paper called "Quo vadis, European space weather community" has been published in J. Space Weather Space Clim. which outlines plans for the creation of an organisation to represent the European space weather community.
Since it was published, an online event of the same name was organised on 17 March 2021. A “Quo Vadis Interim Board” was then set up, to establish a mechanism for this discussion, which will go on until June 21st.

The Interim Board is composed of volunteers from the community in Europe. Its role is to coordinate the efforts so that the space weather (and including space climate) European community can:

  1. Organise itself
  2. Elect people to represent them

To reach this goal, the Interim Board is inviting anyone interested in and outside Europe to join the “Quo Vadis European Space Weather Community ” discussion forum.

Eligible European Space Weather Community members should register to the “Electoral Census” to be able to vote in June for the final choice of organisation.

This effort will be achieved through different actions indicated on the Quo Vadis webpage and special Slack workspace.

Call for applications for STFC Public Engagement Early-Career Researcher Forum


The STFC Public Engagement Early-Career Researcher Forum (the ‘PEER Forum’) will support talented scientists and engineers in the early stages of their career to develop their public engagement and outreach goals, to ensure the next generation of STFC scientists and engineers continue to deliver the highest quality of purposeful, audience-driven public engagement.

Applications are being taken until 4pm on 3 June 2021. If you would like to apply, visit the PEER Forum website, and if you have queries This email address is being protected from spambots. You need JavaScript enabled to view it..

The PEER Forum aims:

  • To foster peer learning and support between early career scientists and engineers with similar passion for public engagement and outreach, thus developing a peer support network that goes beyond an individual’s term in the forum 
  • To foster a better knowledge and understanding of the support mechanisms available from STFC and other organisations, including funding mechanisms, evaluation, and reporting. As well as how to successfully access and utilise this support 
  • To explore the realities of delivering and leading public engagement as an early career professional and build an evidence base to inform and influence STFC and by extension UKRI’s approaches to public engagement, giving an effective voice to early career researchers

What will participation in the Forum involve?

Participants in the PEER Forum will meet face-to-face at least twice per year to share learning and to participate in session that will strengthen the depth and breadth of their understanding of public engagement and outreach.

Who can apply to join the Forum?

The PEER Forum is for practising early-career scientists and engineers who have passion and ambition for carrying out excellent public engagement alongside, and complementary to, their career in science or engineering. We are seeking Forum members from across the breadth of STFC’s pure and applied science and technology remit.

The specific personal requirements of PEER Forum membership are that members:

  • Have completed (or currently studying for – including apprentices and PhD students) their highest level of academic qualification within the last ten years (not including any career breaks)
  • Are employed at a Higher Education Institute, or a research-intensive Public Sector Research Organisation or Research Laboratory (including STFC’s own national laboratories)
  • Work within a science and technology field in STFC’s remit, or with a strong inter-disciplinary connection to STFC’s remit, or use an STFC facility to enable their own research
  • Clearly describe their track record of experience in their field, corresponding to the length of their career to date
  • Clearly describe their track record of delivering and leading, or seeking the opportunity to lead, public engagement and/or outreach
  • Can provide insight into their experiences in public engagement and/or outreach and also evidence one or more of
  • Inspiring others
  • Delivering impact
  • Demonstrating creativity
  • Introducing transformative ideas and/or inventions
  • Building and sustaining collaborations/networks
  • Are keen communicators with a willingness to contribute to the success of a UK-wide network
  • https://stfc.ukri.org/public-engagement/training-and-support/peer-forum/  

    Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

    If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long, include a figure/animation, and include an affiliation with a UK MIST institute. Please get in touch!

    Evaluating the ionospheric mass source for the magnetospheres of Jupiter and Saturn

    By Carley J. Martin (Lancaster University)

    Ionospheric outflow is a flow of plasma initiated by a loss of equilibrium along a magnetic field line. This induces an electric field due to the separation of electrons and ions in a gravitational field. At Earth, this process is initiated by dayside reconnection in the Dungey cycle. But, is this the case at the gas giants?  

    Valek+ (2019) show that there is an increased outflow on field lines which map between the moon Io and the auroral oval at Jupiter, and very little in the actual polar cap. Hence, in our analysis, we evaluate over these latitudes at Jupiter and Saturn. This also means we must consider a different driver than the Dungey cycle! 

    We developed a model which estimates the number of charged particles that flow from the ionospheres of Jupiter and Saturn. We also look at the effects of field aligned currents (FACs) and centrifugal forces on the total source rates of the outflow. At Saturn, the inclusion of these effects increase the total flux from the ionosphere, and it is now comparable to in situ measurements by Cassini CAPS. At Jupiter, the total particle source is found to be comparable to Io as a source of plasma in the magnetosphere.  We find that the downward FACs and centrifugal force act to increase the flow of electrons from the ionosphere, and conversely upward FAC’s act to decrease outflow (see Figure below).  

    The additional mass flux into the inner and middle magnetospheres of Jupiter and Saturn can substantially affect the dynamics and composition and so must be included in any future assessment! 

    Figure shows how electron flux at the equator varies with radial distance, comparing the inclusion and exclusion of field-aligned currents.

    Figure shows an example of results for the electron flux mapped to the equator; solid green is with field‐aligned currents; dotted green is without field‐aligned currents. The insert shows the shape of the field‐aligned currents themselves. The electron flux is highly modified by the field‐aligned currents present, where it is enhanced by a downward current and retarded by an upward current in the auroral regions.

    Please see the papers for full details:

    Martin, C. J., Ray, L. C., Felici, M., Constable, D. A., Lorch, C. T. S., & Kinrade, J., et al. (2020). The effect of field‐aligned currents and centrifugal forces on ionospheric outflow at Saturn. Journal of Geophysical Research: Space Physics, 125, e2019JA027728. https://doi.org/10.1029/2019JA027728

    Martin, C. J., Ray, L. C., Constable, D. A., Southwood, D. J., Lorch, C. T. S., & Felici, M. (2020). Evaluating the ionospheric mass source for Jupiter's magnetosphere: An ionospheric outflow model for the auroral regions. Journal of Geophysical Research: Space Physics, 125, e2019JA027727. https://doi.org/10.1029/2019JA027727 

    Saturn’s Nightside Dynamics During Cassini’s F Ring and Proximal Orbits: Response to Solar Wind and Planetary Period Oscillation Modulations

    By Tom J. Bradley (University of Leicester)

    In this study we examined the final 44 Cassini spacecraft orbits that traversed the midnight sector of Saturn’s magnetosphere to distances of ~21 Saturn radii, in order to investigate responses to heliospheric conditions inferred from model solar wind and Cassini galactic cosmic ray (GCR) flux data.

    Clear responses to anticipated magnetospheric compressions were observed in magnetic field and energetic particle data, together with Saturn kilometric radiation (SKR), auroral hiss, and ultraviolet auroral emissions. Most compression events were associated with corotating interaction regions, as shown by the periodic model solar wind parameters and Forbush-like decreases in GCR fluxes in Figure 1.

    Overview of the dataset showing time series of solar wind data, particle fluxes, and PPO phase. 

    Figure 1: Overview of full dataset. Figure 1a shows a RPWS spectrogram, and Figures 1b-1e show model solar wind dynamic pressure (nPa), IMF strength (nT), LEMMS channel E6 count rate (GCR flux of >120 MeV protons), and LEMMS channel P2 count rate (GCR flux as well as SEP flux of 2.3-4.5 MeV protons). Figure 1f shows the PPO beat phase (deg modulo 360°). The superposed red and green shaded vertical bands (white dashed lines in Figure 1a) show intervals of magnetospheric compression defined by criteria given above. Red corresponds to major events with an extended LFE interval (longer than one planetary rotation) and green to minor events without such an extended LFE interval. The superposed grey shaded vertical bands show intervals of relative magnetospheric quiet when energetic particle fluxes were at near-minimum values.

    Each compression tended to produce ~2-3.5 day intervals of magnetospheric activity that were typically recurrent with the ~26 day solar rotation period (one or two such events per rotation). However, the responses were somewhat variable (as is shown in greater detail in the article), and were thus divided into “major” and “minor” events. Major events (red shaded bands) are those with SKR low frequency extension (LFE) intervals with durations greater than ~one planetary rotation (11 out of 20 events, or 55%), while minor events (green shaded bands) either have no noticeable LFE interval (7 out of 20 events, or 35%), or one whose duration is one planetary rotation period or less (2 out of 20 events, or 10%)

    These two types of responses were found to be modulated by Saturn’s planetary period oscillations (PPOs), as follows.

    1. Major events are favoured when the two PPO systems are roughly in anti-phase, where they act together to thin and thicken the tail plasma sheet during each PPO cycle. The anti-phase conditions during major events result in thin plasma sheet conditions (once per rotation), that are most unstable to tail reconnection, producing energetic nightside particle injections and poleward contractions of dawn-brightened auroras.
    2. Minor events are favoured when the PPOs are in phase, where they act together to stabilise the plasma sheet and inhibit tail collapse, resulting in less obvious magnetospheric responses.

    Overall, the results emphasize how strongly activity in Saturn’s magnetosphere is modulated by both the concurrent heliospheric conditions and the PPO modulations.

    Please see the paper for full details:

    Bradley, T. J., Cowley, S. W. H., Bunce, E. J., Melin, H., Provan, G., & Nichols, J. D., et al. (2020). Saturn's nightside dynamics during Cassini's F ring and proximal orbits: Response to solar wind and planetary period oscillation modulations. Journal of Geophysical Research: Space Physics, 125, e2020JA027907. https://doi.org/10.1029/2020JA027907 

    The visual complexity of coronal mass ejections follows the solar cycle

    By Shannon Jones (University of Reading)

    Coronal Mass Ejections (CMEs), or solar storms, are huge eruptions of particles and magnetic field from the Sun. With the help of 4,028 citizen scientists, we found that the appearance of CMEs changes over the solar cycle, with CMEs appearing more visually complex towards solar maximum. 

    We created a Zooniverse citizen science project in collaboration with the UK Science Museum, where we showed pairs of images of CMEs from the Heliospheric (wide-angle white-light) Imagers on board the twin STEREO spacecraft, and asked participants to decide whether the left or right CME looked most complicated, or complex. We used these data to rank 1,110 CMEs in order of their relative visual complexity. Figure 1 shows three example storms from across the ranking (see figshare for an animation with all CMEs). 

    Three images of CMEs, with varying complexity.

    Figure 1. Example images showing three example CMEs in ranked order of subjective complexity increasing from low (left-hand image) through to high (right-hand image).

    Figure 2 shows the relative complexity of all 1,110 CMEs, with CMEs observed by STEREO-A shown by pink dots, and CMEs observed by STEREO-B shown by blue dots. This shows that the annual average complexity values follow the solar cycle, and that the average complexity of CMEs observed by STEREO-B is consistently lower that the complexity of CMEs observed by STEREO-A.

    These results suggest that there is some predictability in the structure of CMEs, which may help to improve future space weather forecasts.

    A plot showing relative complexity as a function of time, and total sunspot number as a function of time.

    Figure 2. Top panel: relative complexity of every CME in the ranking plotted against time. Pink points represent STEREO-A images, while blue points represent STEREO-B images. Annual means and standard deviations are over plotted for STEREO-A (red dashed line) and STEREO-B (blue dashed line) CMEs. Bottom panel: Daily total sunspot number from SILSO shown in yellow, with annual means over plotted (orange dashed line).

    See the paper for more details:

    Jones, S. R., C. J. Scott, L. A. Barnard, R. Highfield, C. J. Lintott and E. Baeten (2020): The visual complexity of coronal mass ejections follows the solar cycle. Space Weather, https://doi.org/10.1029/2020SW002556.

    Determining the Nominal Thickness and Variability of the Magnetodisc Current Sheet at Saturn

    By Ned Staniland (Imperial College London)

    The presence of an internal plasma source (the moon Enceladus) coupled with the rapid rotation rate of Saturn (~10 hrs) results in an equatorially confined layer of plasma that stretches the dipolar planetary magnetic field into what is known as a magnetodisc. This structure is found at both gas giants and so understanding its formation and how it responds to different drivers reveals the dynamics of these magnetospheres and how the geologically active moons affect them. We explore the thickness of the equatorial current sheet that is associated with the stretched field geometry. We use 66 fast, high inclination crossings of the current sheet made by Cassini, where a clear signature in the magnetic field data (Figure 1a shows a sharp reversal in the radial field during the crossing) allows for a direct determination of its thickness and offset.

    We find that the current sheet is thinner than previously calculated but identify several sources of spatial and temporal variability. For instance, the current sheet is 50% thicker in the nightside inner magnetosphere compared to the dayside (Figure 1b). This is consistent with the presence of a noon‐midnight convection electric field at Saturn that produces a hotter plasma population on the nightside, resulting in a thicker current sheet. However, the current sheet becomes thinner with radial distance on the nightside, while staying approximately constant on the dayside (Figure 1b), reflecting the solar wind compression of the magnetosphere and the stretching of the field in the tail. Some of the variability is well characterized by the planetary period oscillations (PPOs). But we also find evidence for non‐PPO drivers of variability, highlighting the interplay between different drivers that shape the Saturnian system.  

    This work shows the necessity for considering the variable structure of the largest current system in the Saturnian magnetosphere, which is essential particularly for future modelling efforts.

    Plots showing (a) magnetic field signatures of a current sheet crossing for a example pass and (b) statistical distribution of the current sheet thickness comparing dayside and nightside crossings and inner and magnetodisc crossings.

    Figure 1a) shows Cassini magnetic field data during a current sheet crossing. We determine the current sheet boundaries by identifying spikes in the variance of the cylindrical radial field component (green line, top panel). Figure 1b) shows box plots calculated from the 66 crossings that highlight the radial profile and day-night asymmetry of the current sheet thickness.

    For more information, please see:

    Staniland, N. R., Dougherty, M. K., Masters, A., & Bunce, E. J. (2020). Determining the nominal thickness and variability of the magnetodisc current sheet at Saturn. Journal of Geophysical Research: Space Physics, 125, e2020JA027794. https://doi.org/10.1029/2020JA027794

    Random forest model of ultra‐low frequency magnetospheric wave power

    By Sarah Bentley (Northumbria University)

    Parameterised (statistical) models are being increasingly used in space physics, both as an efficient way to use large amounts of data and as an important step in real-time modelling, to capture physics on scales not incorporated in numerical modelling. We have used machine learning techniques to create a model for the power in ultra low frequency (1-15mHz, ULF) waves throughout Earth’s magnetosphere. Capturing the power in these global-scale waves is necessary to determine the energisation and transport of high energy electrons in Earth’s radiation belts, and the model can also be used to test how individual wave driving processes combine throughout the magnetosphere.

    The model is constructed using ensembles of decision trees (i.e. a random forest). Each decision tree iteratively partitions the given parameter space into variable size bins to reduce the error in the predicted output values. These variable bins mitigate several difficulties inherent to space physics data (sparseness, interdependent driving parameters, nonlinearity) to produce an approximation of ULF wave power in our chosen parameter space: physical driving parameters (solar wind speed vsw, magnetic field component Bz and variance in proton number density var(Np)) and spatial parameters of interest (magnetic local time MLT, magnetic latitude and frequency band).

    [frequency, latitude, component, MLT, vsw, Bz, var(Np)] → ULF wave power

    It is not always possible to extract all physical processes from parameterised models such as this. Instead we suggest a hypothesis testing framework to examine the physics driving ULF wave power. This formalises the approach taken in full statistical surveys, beginning with dominant driving processes, testing how they manifest in the model, and then examining remaining power.

    Plots showing how ULF wave power varies with MLT and a given parameter. Each panel considers a different parameter.

    Figure 1: Variation of ULF wave power at one station, 5mHz. Model-predicted power spectral density is shown by magnetic local time at quantiles of (a) speed (for median Bz < 0 and var(Np)), (b) Bz < 0 (for median speed and var(Np)) and (c) var(Np) (for median speed and Bz < 0). Median values for speed, Bz < 0 and var(Np) are 421 km s−1, −1.8 nT and var(Np) = −0.716 log10(cm−3) respectively. (d)-(f) also show variation of wave power with speed, Bz and var(Np) but for Bz > 0 (with a median value of Bz = 1.7 nT held constant for (d) and (f)). Radius of each quantile corresponds to the power spectral density in log10(nT2/Hz) predicted for those solar wind values, at that station, frequency and magnetic local time.

    In the paper we demonstrate how this method of iteratively considering smaller scale driving processes applies to magnetic local time asymmetries in ULF wave power. In Figure 1 we can see the wave power predicted by the model when we change one driving parameter and keep the others constant, for Bz<0 and Bz>0 separately. The MLT asymmetries in power clearly change with both driving parameter and there are two separate behaviour regimes for Bz>0, Bz<0. Digging deeper into these results using the framework, we conclude that

    • The dawn-dusk wave power asymmetry is a combined effect of the different radial density profiles and wave driving from magnetopause (“external”) perturbations such as Kelvin-Helmholtz instabilities.
    • We cannot account for the effects of a compressed magnetosphere, but var(Np) does not represent wave driving by magnetopause perturbations.
    • Nor does Bz, which likely represents wave power increases with substorms. 

    We also found significant remaining uncertainty with mild solar wind driving, suggesting that the internal state of the magnetosphere should be included in future models.

    Please see the paper for full details:

    Bentley, S. N., Stout, J., Bloch, T. E., & Watt, C. E. J. (2020). Random forest model of ultra‐low frequency magnetospheric wave power. Earth and Space Science, 7, e2020EA001274. https://doi.org/10.1029/2020EA001274