Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

SSAP roadmap update

The STFC Solar System Advisory Panel (SSAP) is undertaking a review of the "Roadmap for Solar System Research", to be presented to STFC Science Board later this year. This is expected to be a substantial update of the Roadmap, as the last full review was carried out in 2012, with a light-touch update in 2015.

The current version of the SSAP Roadmap can be found here.

In carrying out this review, we will take into account changes in the international landscape, and advances in instrumentation, technology, theory, and modelling work. 

As such, we solicit your input and comments on the existing roadmap and any material we should consider in this revision. This consultation will close on Wednesday 14 July 2021 and SSAP will try to give a preliminary assessment of findings at NAM.

This consultation is seeking the view of all members of our community and we particularly encourage early career researchers to respond. Specifically, we invite:

Comments and input on the current "Roadmap for Solar System Research" via the survey by clicking here.

Short "white papers" on science investigations (including space missions, ground-based experimental facilities, or computing infrastructure) and impact and knowledge exchange (e.g. societal and community impact, technology development). Please use the pro-forma sent to the MIST mailing list and send your response to This email address is being protected from spambots. You need JavaScript enabled to view it..

Quo vadis interim board


A white paper called "Quo vadis, European space weather community" has been published in J. Space Weather Space Clim. which outlines plans for the creation of an organisation to represent the European space weather community.
Since it was published, an online event of the same name was organised on 17 March 2021. A “Quo Vadis Interim Board” was then set up, to establish a mechanism for this discussion, which will go on until June 21st.

The Interim Board is composed of volunteers from the community in Europe. Its role is to coordinate the efforts so that the space weather (and including space climate) European community can:

  1. Organise itself
  2. Elect people to represent them

To reach this goal, the Interim Board is inviting anyone interested in and outside Europe to join the “Quo Vadis European Space Weather Community ” discussion forum.

Eligible European Space Weather Community members should register to the “Electoral Census” to be able to vote in June for the final choice of organisation.

This effort will be achieved through different actions indicated on the Quo Vadis webpage and special Slack workspace.

Call for applications for STFC Public Engagement Early-Career Researcher Forum


The STFC Public Engagement Early-Career Researcher Forum (the ‘PEER Forum’) will support talented scientists and engineers in the early stages of their career to develop their public engagement and outreach goals, to ensure the next generation of STFC scientists and engineers continue to deliver the highest quality of purposeful, audience-driven public engagement.

Applications are being taken until 4pm on 3 June 2021. If you would like to apply, visit the PEER Forum website, and if you have queries This email address is being protected from spambots. You need JavaScript enabled to view it..

The PEER Forum aims:

  • To foster peer learning and support between early career scientists and engineers with similar passion for public engagement and outreach, thus developing a peer support network that goes beyond an individual’s term in the forum 
  • To foster a better knowledge and understanding of the support mechanisms available from STFC and other organisations, including funding mechanisms, evaluation, and reporting. As well as how to successfully access and utilise this support 
  • To explore the realities of delivering and leading public engagement as an early career professional and build an evidence base to inform and influence STFC and by extension UKRI’s approaches to public engagement, giving an effective voice to early career researchers

What will participation in the Forum involve?

Participants in the PEER Forum will meet face-to-face at least twice per year to share learning and to participate in session that will strengthen the depth and breadth of their understanding of public engagement and outreach.

Who can apply to join the Forum?

The PEER Forum is for practising early-career scientists and engineers who have passion and ambition for carrying out excellent public engagement alongside, and complementary to, their career in science or engineering. We are seeking Forum members from across the breadth of STFC’s pure and applied science and technology remit.

The specific personal requirements of PEER Forum membership are that members:

  • Have completed (or currently studying for – including apprentices and PhD students) their highest level of academic qualification within the last ten years (not including any career breaks)
  • Are employed at a Higher Education Institute, or a research-intensive Public Sector Research Organisation or Research Laboratory (including STFC’s own national laboratories)
  • Work within a science and technology field in STFC’s remit, or with a strong inter-disciplinary connection to STFC’s remit, or use an STFC facility to enable their own research
  • Clearly describe their track record of experience in their field, corresponding to the length of their career to date
  • Clearly describe their track record of delivering and leading, or seeking the opportunity to lead, public engagement and/or outreach
  • Can provide insight into their experiences in public engagement and/or outreach and also evidence one or more of
  • Inspiring others
  • Delivering impact
  • Demonstrating creativity
  • Introducing transformative ideas and/or inventions
  • Building and sustaining collaborations/networks
  • Are keen communicators with a willingness to contribute to the success of a UK-wide network
  • https://stfc.ukri.org/public-engagement/training-and-support/peer-forum/  

    Astronet Science Vision & Infrastructure Roadmap


    Astronet is a consortium of European funding agencies, established for the purpose of providing advice on long-term planning and development of European Astronomy. Setup in 2005, its members include most of the major European astronomy nations, with associated links to the European Space Agency, the European Southern Observatory, SKA, and the European Astronomical Society, among others. The purpose of the Science Vision and Infrastructure Roadmap is to deliver a coordinated vision covering the entire breadth of astronomical research, from the origin and early development of the Universe to our own solar system.

    The first European Science Vision and Infrastructure Roadmap for Astronomy was created by Astronet, using EU funds, in 2008/09, and updated in 2014/15. Astronet is now developing a new Science Vision & Infrastructure Roadmap, in a single document with an outlook for the next 20 years. A delivery date to European funding agencies of mid-2021 is anticipated. 

    The Science Vision and Infrastructure Roadmap revolves around the research themes listed below:

    • Origin and evolution of the Universe
    • Formation and evolution of galaxies
    • Formation & evolution of stars
    • Formation & evolution of planetary systems
    • Understanding the solar system and conditions for life

    but will include cross-cutting aspects such as computing and training and sustainability.


    After some delays due to the global pandemic, the first drafts of the chapters for the document are now available from the Panels asked to draft them, for you to view and comment on. For the Science Vision & Roadmap to be truly representative it is essential we take account of the views of as much of the European astronomy and space science community as possible – so your input is really valued by the Panels and Astronet. Please leave any comments, feedback or questions on the site by 1 May 2021.

    It is intended that a virtual “town hall” style event will be held in late Spring 2021, where an update on the project and responses to the feedback will be provided.

    Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

    If you would like to submit a nugget, please contact This email address is being protected from spambots. You need JavaScript enabled to view it. and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long, include a figure/animation, and include an affiliation with a UK MIST institute. Please get in touch!

    Chandra Observations of Jupiter's X-ray Auroral Emission During Juno Apojove 2017

    By Dale Weigt (University of Southampton)

    Jupiter has dynamic auroral X-ray emissions, first observed over 40 years ago. A key characteristic of Jupiter’s aurora are “hot spots” of soft X-rays at the poles, which we observe from the Chandra X-ray Observatory (CXO) with high spatial resolution. These non-conjugate northern (Gladstone et al. 2002 + others) and southern auroral hot spots (Dunn et al. 2017 + others) are found in several observation campaigns to flare quasi-periodically. However, the driver of the X-rays (and hence their link to solar wind and magnetospheric conditions) is currently unknown.

    In the Weigt at. (2020) case study, we analyse CXO data from 18th June 2017 during a 10-hour observation where Juno was near its apojove position. An XMM-Newton observation overlapped the latter half of this observation (Wibisono et al. 2020). From the particle data, we find that Juno crossed the magnetopause several times preceding the Chandra observation. Using the closest crossing and amagnetopause model, we inferred a compressed magnetosphere during this interval. Using a numerical threshold to define spatial regions of concentrated photons, we find that the hot spot in the north appeared twice during the observation with a more extended morphology. Using Rayleigh testing, we find significant quasi-periodic oscillations (QPO) during both instances the hot spot was in view at ~ 37 min and 26 min respectively. The 26-min QPO was also observed by XMM-Newton and was found to remain for a further two Jupiter rotations. Using the Vogt et al. (2011, 2015) flux equivalence model, we map the origin of the QPOs and X-ray driver to be on the dayside-dusk magnetopause boundary, considering the caveats of the model. The timescales of the periods found suggest that the driver may be linked to magnetospheric processes producing ultra-low frequency waves (ULF).

    X-ray aurora at Jupiter's northern pole are mapped to their magnetospheric origins.

    Figure 1: (c) polar plot of Jupiter’s north pole showing the observed mapped and unmapped photons (black dots and orange triangles respectively)at the beginning of the observation interval. (d) The photons are mapped to their magnetospheric origins using the Vogt et al. (2011, 2015) model, where error bars show the estimated mapping errors. The red dashed line indicates the magnetopause boundary inferred from the Juno data during the Chandra observation. The location of Juno during this time is denoted by the yellow star. 

    These results demonstrate the capabilities of CXO data in understanding the “hot spots” in Jupiter’s aurora, and can provide important contextual information to Juno observations. This study is also the first to find two significant QPOs in the northern hot spot over timescales less than a Jupiter rotation.

    For more details, see the paper:

    Weigt, D. M., Jackman, C. M., Dunn W. R., Gladstone G.R., Vogt M. F., Wibisono A. D., et al (2020). Chandra Observation of Jupiter’s X-rays Auroral Emission During Juno Apojove 2017 Journal of Geophysical Research: Planets, 125, e2019JE006262. https://doi.org/10.1029/2019JE006262 

    Jupiter’s X-ray Emission 2007 Part 1 and Part 2

    By William Dunn (Mullard Space Science Laboratory, UCL; The Centre for Planetary Science at UCL/Birkbeck; Harvard‐Smithsonian Center for Astrophysics)

    The solar minimum from 2007-2009 was the lowest and longest of the space age. In February 2007, the New Horizons spacecraft was approaching Jupiter measuring the conditions in the solar wind. At this time, a rich multi-instrument observing campaign was conducted, including X-ray, UV and Radio observations. In 2 accepted JGR: Space Physics papers we explore these campaigns, particularly focussing on the X-ray observations. 

    The first paper concentrates on the X-ray emissions in the context of solar minimum. We explore the spectral and spatial morphologies of Jupiter’s X-rays using the Chandra and XMM-Newton (XMM) observatories. We show that the Jovian equatorial emission varies with solar cycle and may be utilised as a diagnostic of the disk-integrated solar spectrum at a given time. 

    X-ray aurora projected onto Jupiter's northern pole

    Figure showing variability in Jupiter’s X-ray aurora as recorded by Chandra ACIS during the 2007 campaign.  Each plot shows a projection on Jupiter's North pole of the X-ray aurora. The logarithmic color bar indicates the number of X-rays in bins of 3 degree by 3 degree of S3 latitude-longitude. Dashed grey lines of longitude radiate from the pole, increasing clockwise in increments of 30 degree from 0 degree at the top. Concentric grey circles outward from the pole represent lines of latitude in increments of 10 degree. Thin green contours with white text labels indicate the VIP4  [Connerney et al. 1998] model magnetic field strength in Gauss. Thick gold contours show the magnetic field ionospheric footprints of field lines intersecting the Jovigraphic equator at 5.9 RJ (Io's orbit), 15 RJ and 45 RJ [Grodent et al. 2008; Vogt et al. 2015] from equator to pole respectively.

    The second paper compares the UV, Radio and X-ray auroral emissions in the context of the solar wind conditions, identifying shared behaviours between the emissions. Generally, we find that Jupiter’s X-ray aurora is best fit by ion lines from precipitating magnetospheric plasma, but during some magnetospheric expansions the spectrum is very different. At these times, the spectral models require the inclusion of a precipitating solar wind ion population, suggesting that additional solar wind ions gain access to the outer magnetosphere or directly to the pole during magnetospheric expansions. During these expansions we also observe a new type of X-ray aurora, which coexists with the other aurorae. We label this new aurora as ‘flickering X-ray aurora’ based on its temporal behaviour. 

    The papers lay important groundwork in X-ray aurora spectral modelling and in attempting to understand the unification of the different multi-waveband auroral emissions and their relationship to solar wind conditions.

    For more details see:

    Dunn, W. R. et al. Jupiter’s X-rays 2007 Part 1: Jupiter’s X-ray Emission During Solar Minimum. J. Geophys. Res. Sp. Phys. https://doi.org/10.1029/2019JA027219

    Dunn, W. R. et al. Jupiter’s X-ray Emission 2007 Part 2: Comparisons with UV and Radio Emissions and In-Situ Solar Wind Measurements. J. Geophys. Res. Sp. Phys. https://doi.org/10.1029/2019JA027222 

    Do Statistical models capture magnetopause dynamics during sudden magnetospheric compressions?

    By Frances Staples (Mullard Space Science Laboratory, UCL)

    Under steady-state solar wind conditions, the magnetopause location is described as a pressure balance between internal magnetic pressure of Earth’s magnetic field and the external dynamic pressure of the solar wind. Under extreme solar wind driving, such as high solar wind pressure or strong southward-directed interplanetary magnetic fields, this boundary is located much closer towards Earth. These compressions of the magnetopause can play a significant role in the depletion of magnetospheric plasma in the Van Allen Radiation Belts, via magnetopause shadowing. Statistical models of the magnetopause location are often used in investigations of radiation belt losses through the magnetopause. However, empirical models cannot capture the time varying nature of the magnetopause during such events, which are often associated with large step-changes in solar wind conditions.

    We constructed a database of ~ 20,000 spacecraft crossings of the dayside magnetopause to assess the accuracy of the commonly used Shue et al. (1998) model. For the majority of our measurements, the Shue et al. (1998) model accurately represented the magnetopause location within an error of ± 1 RE. However, when the magnetopause was compressed below 8 RE, the model overestimated the radial distance of the magnetopause by more than 1 RE on average. This result is demonstrated in the Figure as the data does not follow the blue line, which represents where the modelled location is equal to measured location, for magnetopause measurements below 10 RE

    A plot comparing measurements of the magnetopause location compared to modelled values.

    Figure: The median magnetopause location, RMod, calculated for a given measurement of the magnetopause by a spacecraft, RSC, is plotted by purple diamonds, and a best fit is shown by the purple line. The interquartile range of RSC (where 75% of magnetopause measurements were taken) is shown by the shaded region.

    Furthermore, during sudden storm commencements, where interplanetary shocks impact the magnetosphere, the modelled magnetopause was significantly displaced from the measured location. Magnetopause measurements were on average 6% closer to the radiation belts, with a maximum of 42%. We conclude that statistical magnetopause parameterizations may not be appropriate during dynamic compressions of the magnetosphere and could underestimate the role of magnetopause shadowing on radiation belt dynamics. Models should be supplemented by magnetopause observations wherever possible and we have provided a dataset of THEMIS magnetopause crossing to be used by the research community.

    For more information, please see the paper;

    Staples, F. A., Rae, I. J., Forsyth, C., Smith, A. R. A., Murphy, K. R., Raymer, K. M., et al (2020). Do statistical models capture the dynamics of the magnetopause during sudden magnetospheric compressions?. Journal of Geophysical Research: Space Physics, 125, e2019JA027289. https://doi.org/10.1029/2019JA027289 

    The database of THEMIS and Geotail magnetopause crossings used in this study are openly available at https://doi.org/10.5281/zenodo.3700504 and https://doi.org/10.5281/zenodo.3719411 .

    Using Differential Magnetometer Measurements to Monitor Geomagnetically Induced Currents in the Complex High Voltage Network of Great Britain

    By Juliane Hübert (British Geological Survey, Edinburgh)

    Large geomagnetic storms create time-varying magnetic fields, which induce secondary electric fields in the conductive Earth resulting in geomagnetically induced currents (GICs). The high voltage (HV) power transmission network is connected to the Earth at grounding points in substations. These offer a low-resistance path for GICs to flow into the power network, potentially causing the transformers to malfunction with extensive consequences for the national power supply. The UK government has listed severe space weather events as one of the highest priority natural hazard. Therefore, it is important to fully understand GICs to enable the mitigation of this hazard. It is possible to directly measure GICs at substations using Hall-effect probes, but due to cost and operational reasons, at present only four substations in the UK are monitored. Therefore we have developed a new instrument to measure GICs indirectly using two magnetometers, one placed under the HV line and another a few hundred metres away. By examining the differences between the magnetometers, we work out the additional current flowing in the HV line.

    Magnetometer data used to measure GICs

    Figure 1: Recorded times series during the G3 geomagnetic storm on 25-26 August 2018. Panels a-d) Horizontal magnetic field components at DMM site Whiteadder (WHI), East Scotland. Panel e) Line GICs at WHI; Panel f) GIC data from a Hall probe at Torness substation.

    In the study, we present the design and initial deployment of the first differential magnetometer method (DMM) systems in the UK and measurements from the first site installed at Whiteadder in eastern Scotland. At this site we have successfully detected geomagnetically induced currents in a 400 kV high voltage power network. The Figure compares line GIC data recorded at Whiteadder (panels a-e) to data from a Hall probe at the nearby substation at Torness (panel f) during the 26 August 2018 storm. The measured GICs from the line and the Hall probe show excellent temporal correlation, though with significant differences in amplitude, illustrating that line measurements with DMM and Hall probes at grounding points capture different but complementary views of GIC flow in a network. Using the latest model of the HV network and electric field variations estimated from a magnetotelluric survey, we show that the measured line and earthing GICs match the expected modelled values during the geomagnetic storm. This is the first study to validate such a complex network model using direct and indirect measurements of GICs.

    The full article can be found here:

    Hübert, J., Beggan, C. D., Richardson, G. S., Martyn, T., & Thomson, A. W. P. (2020). Differential Magnetometer Measurements of Geomagnetically Induced Currents in a Complex High Voltage Network. Space Weather, 18, https://doi.org/10.1029/2019SW002421  

    The Climatology of Extreme Geomagnetic Field Fluctuations

    by Neil Rogers (Lancaster University)

    Strong electrical currents in the Earth’s ionosphere and magnetosphere can produce geomagnetically induced currents (GIC) in ground-based infrastructure, such as electricity cables. For extreme conditions this can lead to instability and failure of the electricity supply. The magnitude of these currents is proportional to the rate of change of the horizontal geomagnetic field, dBH/dt.  Climatological statistics of |dBH/dt| may be combined with models of ground conductivity and impedances in the electricity network to evaluate the risk of GICs.     

    Using 1.9 billion measurements from 125 magnetometers worldwide we fitted Generalised Pareto (GP) distributions to occurrences of dBH/dt above the 99.97th percentile (P99.97). By extrapolating the GP tail distributions we predicted the magnitude of dBH/dt expected every 200 years. This is shown in Figure 1a (with 95% confidence intervals) as a function of corrected geomagnetic (CGM) latitude. 

    Plots showing how extreme values of the rate of change of the geomagnetic field varies spatially.

    Figure 1. a) 200-year return levels for |dBH/dt|. b) Occurrence probabilities of |dBH/dt| > P99.97 vs CGM latitude and MLT.

    The sharp increase near 53° CGM latitude suggests that the largest |dBH/dt| result from substorm expansions in a greatly expanded auroral region. Figure 1b presents the occurrence probability of |dBH/dt| > P99.97 vs latitude and magnetic local time (MLT). In the auroral zones this maximises in the hours before midnight due to substorm activity and in the 3-10 MLT sector due to ULF wave activity. Poleward of the dayside cusp region (~77° CGM latitude) occurrence rates increase near local noon, in summer, and under northward interplanetary magnetic field (IMF), indicating a relation to magnetospheric tail-lobe reconnection. At latitudes below 40° most occurrences were related to Sudden Commencements, the effect of shock fronts arriving in the solar wind. 

    This study models extreme dBH/dt as functions of latitude, MLT, month, and compass direction for return periods up to 500 years, and examines the effect of IMF orientation. The results demonstrate the response of the geomagnetic field to different drivers, and have significant potential in advancing modelling of GIC hazards.

    For more information, please see the paper:

    Rogers NC, Wild JA, Eastoe EF, Gjerloev JW & Thomson AWP. 2020. A global climatological model of extreme geomagnetic field fluctuations. J. Space Weather Space Clim. 10, 5. https://doi.org/10.1051/swsc/2020008