MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Solar Wind Dependence of Magnetospheric Ultra-Low Frequency Plasma Waves

By Sarah Bentley, Department of Meteorology, University of Reading, UK

Ultra-low frequency plasma waves (ULF, 1-15 mHz) are implicated in the energisation and transport of radiation belt electrons. Therefore a description of magnetospheric ULF wave power in terms of driving parameters is highly desirable for radiation belt forecasting; in particular, we want to describe power in terms of solar wind properties, as the solar wind is the dominant driver behind these waves.

However, identifying solar wind driving parameters is severely hampered by the nature of the solar wind. All solar wind parameters are highly interrelated due to their common solar sources and the interactions within the solar wind between the Sun and Earth, resulting in the effect that all solar wind properties correlate so strongly with speed vswthat investigating their relationship to magnetospheric properties is difficult.

To circumvent analysis techniques that require properties such as a linear interdependence between these parameters, we use a series of simple yet systematic two-parameter plots (e.g. Figure 1) to identify which parameters are causally correlated to ULF wave power, rather than just correlated via a relationship with speed vsw. We find that speed, the southward component of the interplanetary magnetic field and summed power in proton number density perturbations (vsw, Bz < 0 and δNp) are the three dominant parameters driving power in magnetospheric ultra-low frequency waves. These parameters can be used in future modelling but are also of interest because there is clearly a threshold at Bz = 0, and because ULF wave power depends more on perturbations δNp than the number density Np itself.

For more information, see the paper below or an informal blog post here.

Bentley, S. N., Watt, C. E. J., Owens, M. J., & Rae, I. J. (2018). ULF wave activity in the magnetosphere: Resolving solar wind interdependencies to identify driving mechanisms. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1002/2017JA024740

Figure 1: A two-parameter plot taken from Bentley et al., 2018. We bin the ULF power observed at one station (roughly corresponding to geostationary orbit) at one frequency (2.5mHz) and observe whether it increases with increases in solar wind speed vswand/or the component Bz of the interplanetary magnetic field, using fifteen years of data. Cut-throughs at constant speed and Bz are shown in (b) and (c). ULF power increases with speed and with more strongly negative Bz for Bz<0, but only with speed for Bz>0.  

The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence

By Lloyd Woodham, Mullard Space Science Laboratory, University College London, UK

The solar wind contains turbulent fluctuations that are part of a continual cascade of energy from large scales down to smaller scales. At ion-kinetic scales, some of this energy is dissipated, resulting in a steepening in the spectrum of magnetic field fluctuations and heating of the ion velocity distributions, however, the specific mechanisms are still poorly understood. Understanding these mechanisms in the collisionless solar wind plasma is a major outstanding problem in the field of heliophysics research.

We use magnetic field and ion moment data from the MFI and SWE instruments on-board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyse the spectral properties of magnetic field fluctuations between 0.1 and 5.5 Hz over 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI ‘noise-floor’ using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilise Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton-cyclotron resonance scale, 1/kc, compared to the proton inertial length di and proton gyroscale ρi. This agreement is strongest when we consider periods where βi,perp ~ 1, and is consistent with a spectral break at di for βi,par « 1 and ρi for βi,perp » 1.

Histograms for 2012 of the estimated helicity onset frequency, fb, versus the three characteristic plasma scales, converted into frequencies using Taylor's hypothesis - fL represents fkc, fdi, and fρi, for each column respectively. The data used are for periods where 0.95 ≥ βi,perp ≥ 1.05. The colour-bar represents the column-normalised number of spectra. The black dashed lines represent fb = fL and similarly, the red dashed lines are fb = fL√2 and fb = fL√2, which give the resolution of the wavelet transform about the line fb = fL due to the finite width of the Morlet wavelet in frequency space. We see the best agreement between fb and fkc during these periods.

We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc and its absolute value reaches a maximum at ρi. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton-cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.

Woodham et al., 2018, The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales, ApJ, 856, 49, DOI: 10.3847/1538-4357/aab03d

 

The Broadband Excitation of 3-D Alfvén Resonances (FLRs) in a MHD Waveguide

By Tom Elsden, Department of Mathematics and Statistics, University of St. Andrews, St. Andrews, UK

Field line resonance (FLR) has been the theoretical mechanism used to explain a myriad of ground and spaced based observations of ultra low frequency (ULF) waves in Earth’s magnetosphere. FLR is a plasma physics process whereby energy from a global oscillation (fast mode) can be transferred to local oscillations along magnetic field lines (Alfvén mode), where the fast mode frequency matches the local Alfvén frequency. This process was first studied analytically where the plasma was only inhomogeneous in the radial direction (mathematically 1D) [Southwood, 1974, Chen and Hasegawa, 1974] and has since been extended both analytically and numerically to more complicated systems [e.g. Lee and Lysak, 1989, Chen and Cowley, 1989, Wright and Thompson, 1994, Russell and Wright, 2010].

A feature of FLRs in complicated geometries, such as a dipole, is that the poloidal (radial) and toroidal (azimuthal) Alfvén frequencies are different [e.g. Radoski, 1967]. This infers that the location where the FLR will occur is dependent on the polarisation of the Alfvén wave. This property has recently been explored theoretically in 3D [Wright and Elsden, 2016] and forms the basis of this current work. The magnetosphere is asymmetric and therefore requires an understanding of FLR in 3D. We look at wave coupling in an excessively asymmetric waveguide in order to study the physics clearly.

The figure below taken from Elsden and Wright [2018], displays cuts in the equatorial plane from a 3D MHD waveguide simulation using a 2D dipole magnetic field geometry. In each panel, the x-axis is the radial direction (α) and the y-axis the azimuthal direction (β), and the density varies with azimuth. The left panel shows the energy density (dimensionless units) integrated along a field line, showing an accumulation of energy along curved resonance paths, where the FLR polarisation is between poloidal and toroidal. The middle and right panels show the square root of the kinetic energy in the equatorial plane, revealing ridges which develop by phase mixing in 3D. We find that with a broadband driver it is the natural fast waveguide modes which drive FLRs. Such modes are fairly insensitive to the form of the driver, and hence the resonances are seen at the same locations for many different driving stimuli. This means that the resonances are a property of the medium, and can hence be used as a seismological tool to infer properties of the equilibrium. Finally, the key point is that traditionally FLRs are regarded as having a strictly toroidal polarisation. However, here we have shown in 3D that they can have other polarisations.

Elsden, T. and A. N. Wright (2018), The Broadband Excitation of 3D Alfvén Resonances in a MHD Waveguide, J. Geophys. Res. Space Physics, 123, doi:10.1002/2017JA025018

Figure: Left: Energy density integrated along a field line. Black dashed line represents a theoretical prediction of the main FLR location. Middle: Square root of the the kinetic energy in the equatorial plane. Right: Same as middle but annotated for use in other plots in the paper.



AuroraWatch UK: An Automated Aurora Alert System

By Nathan A. Case, Department of Physics, Lancaster University, Lancaster, UK

The aurora borealis, though most often visible from more northerly latitudes, can occasionally be seen from the UK too. To help the public in their endeavour to see the northern lights from the UK, Lancaster University’s AuroraWatch UK issues alerts of when the aurora might be visible.

As the currents driving the aurora intensify, they produce disturbances to the local magnetic field. Since its inception in September 2000, AuroraWatch UK has been using its own suite of magnetometers to record these disturbances and issue real-time alerts about where in the UK an aurora might be seen.

We have now combined and standardised these alerts, using the latest alert algorithm to produce a 17-year dataset of UK aurora alerts. This dataset, along with the real-time data, is freely available for the community and the general public to use. We find that the alerts match well with the wider Kp index and the solar cycle.

Case, N. A., Marple, S. R., Honary, F., Wild, J. A., Billett, D. D., & Grocott, A. 2017. AuroraWatch UK: An automated aurora alert system. Earth and Space Science, 4, 746–754. https://doi.org/10.1002/2017EA000328

(left) A pie chart illustrating the number of hours spent at each AuroraWatch UK activity level, as a percentage of the total number of hours. (right) A histogram of the percentage of hours spent at an elevated alert level (i.e., yellow or above) per year. Also plotted are (solid line) the percentage of time per year where Kp ≥ 4 and (dashed line) the mean daily sunspot number per year (as a proxy for solar activity). The sunspot number is divided by 10 for scale.

Nugget: Are steady magnetospheric convection events prolonged substorms?

By Maria-Theresia Walach, Department of Physics and Astronomy, University of Leicester, Leicester, UK

The large scale convection of magnetic flux within the Earth’s magnetosphere due to reconnection, also known as the Dungey cycle [Dungey, 1961; 1963], is partially driven by the solar wind. During southward IMF reconnection at the subsolar magnetopause opens flux, which is then added to the magnetotail. Depending on the strength of solar wind-driving, the magnetospheric response can be delayed, episodic or prolonged, also known as “magnetospheric modes” [e.g. Pulkkinen et al., 2007].

Walach and Milan [2015] produced a statistical analysis of the event progression of steady magnetic convection events (intervals where the dayside reconnection is balanced by nightside reconnection [e.g. DeJong et al., 2008]), substorms (dominant dayside reconnection is followed by a delayed interval of dominant nightside reconnection [e.g. Baker et al., 1996]), and sawtooth events (signatures appearing to be quasi-periodic and quasi-global substorms [e.g. Henderson, 2004]). Superposed epoch analyses show that 58% of the studied steady magnetospheric convection events are part of prolonged substorms, where dayside reconnection is at first dominant. Then nightside reconnection is initiated as part of a substorm, but as the solar wind-driving continues the Earth’s magnetosphere then progresses into a state of steady magnetospheric convection, after which the substorm recovery continues.

Walach, M.-T., S. E. Milan (2015), J. Geophys. Res. Space Physics, 120, doi:10.1002/2014JA020631.

walach nugget

Superposed epoch analysis of substorms (red), sawtooth events (orange), steady magnetospheric convection events with preceding substorms (blue) and steady magnetospheric convection events without preceding substorms (green). The onset of the steady magnetospheric convection events with preceding substorms has been shifted to match the preceding substorm onset. The time of the event duration for the steady magnetospheric convection events in superposed epoch analyses in the right column has been normalised.