MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

New MIST Council 2021-

There have been some recent ingoings and outgoings at MIST Council - please see below our current composition!:

  • Oliver Allanson, Exeter (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024 -- Chair
  • Beatriz Sánchez-Cano, Leicester (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2024
  • Mathew Owens, Reading (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023
  • Jasmine Sandhu, Northumbria (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2023 -- Vice-Chair
  • Maria-Theresia Walach, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
  • Sarah Badman, Lancaster (This email address is being protected from spambots. You need JavaScript enabled to view it.), to 2022
    (co-opted in 2021 in lieu of outgoing councillor Greg Hunt)

Charter amendment and MIST Council elections open

Nominations for MIST Council open today and run through to 8 August 2021! Please feel free to put yourself forward for election – the voting will open shortly after the deadline and run through to the end of August. The positions available are:

  • 2 members of MIST Council
  • 1 student representative (pending the amendment below passing)

Please email nominations to This email address is being protected from spambots. You need JavaScript enabled to view it. by 8 August 2021. Thank you!

Charter amendment

We also move to amend the following articles of the MIST Charter as demonstrated below. Bold type indicates additions and struck text indicates deletions. Please respond to the email on the MIST mailing list before 8 August 2021 if you would like to object to the amendment; MIST Charter provides that it will pass if less than 10% of the mailing list opposes its passing. 

4.1  MIST council is the collective term for the officers of MIST and consists of six individuals and one student representative from the MIST community.

5.1 Members of MIST council serve terms of three years, except for the student representative who serves a term of one year.

5.2 Elections will be announced at the Spring MIST meeting and voting must begin within two months of the Spring MIST meeting. Two slots on MIST council will be open in a given normal election year, alongside the student representative.

5.10 Candidates for student representative must not have submitted their PhD thesis at the time that nominations close.

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Shapes of Electron Density Structures in The Dayside Mars Ionosphere

By Catherine Diéval, Department of Physics, Lancaster University, UK.

The dayside Mars ionosphere is thought to be reasonably well understood (see e.g. a review by Withers, 2009). The top of the ionosphere is influenced, among various factors, by localized crustal magnetic fields (e.g. Acuña et al., 1999), solar EUV and solar wind input, in the absence of a global magnetic moment. However a peculiar ionospheric feature is still the subject of ongoing research: non-horizontal electron density structures are regularly observed in localized areas with strong and near vertical crustal magnetic fields, in the topside ionospheric levels remotely sampled by the MARSIS radar (Picardi et al., 2004) onboard the Mars Express orbiter (e.g. Andrews et al. 2014; Diéval et al., 2015; Duru et al., 2006; Gurnett et al., 2005). These structures are detectable via oblique echoes returned to the radar after it sends a radio wave pulse through the ionosphere.The reflectors often appear at higher apparent altitude than the surrounding ionosphere, and so are nicknamed "bulges".

Previous studies also used radar returns uncorrected for signal dispersion. Actually, the group velocity of the radio waves varies with the refractive index of the plasma layers encountered, until reflection occurs. The apparent ranges of the received echoes are calculated using the time delays of the echoes and assuming the speed of light in vacuum. However this leads to overestimating the ranges,so interpretations on the shape of the structures based on these are uncertain.

Our work (Diéval et al., 2018), is a statistical study using timeseries of electron density profiles (electron density function of altitude, corrected for signal dispersion) to study the shape of 48 structures, in their full frequency (thus altitude) range, during the period that Mars Express passes over them.

Figure 1 shows that at any frequency, the most frequent shape is the bulge, dwarfing three other types of detected shapes: dips, downhill slopes and uphill slopes. All these shapes are inclined, thus able to reflect oblique echoes. Interestingly, bulges were reproduced in simulation results of Matta et al. (2015).

For more information, see the paper below:

Diéval, C., Kopf, A. J., & Wild, J. A. (2018). Shapes of magnetically controlled electron density structures in the dayside Martian ionosphere. Journal of Geophysical Research: Space Physics, 123, 3919–3942. https://doi.org/10.1002/2017JA025140

Figure 1: Distribution of the four simplest shapes of structures as a function of frequency, for the 48 events, displayed as colored symbols: bulges (red dots), dips (black diamonds), uphill slopes (blue ‘x’), downhill slopes (green ‘+’). Data points at frequency levels within in the sensitivity gaps are not displayed.

Plasma Heating From Dipolarizations in Saturn's Magnetotail

By Andrew Smith, Department of Physics and Astronomy, University of Southampton, UK.

Magnetic reconnection in a planet's magnetotail allows the stretched field to snap back towards the planet, carrying with it a bundle of plasma.  This is known as a dipolarization front, which often manifest in spacecraft data as rapid rotations of the magnetic field accompanied by a change in the local plasma character.  Dipolarization fronts have been observed at Earth, Mercury, Jupiter and Saturn and are thought to be linked to bright auroral displays.

We performed a large automated survey of Cassini data, identifying 28 intervals when the spacecraft was in the path of dipolarization fronts sweeping towards Saturn.  The changes in plasma properties were investigated, along with the supra-thermal composition.  A large dawn-dusk asymmetry was present in the observations, with 79% of the events located post-midnight.  Figure 1 shows the change in plasma characteristics from that preceding the front (a) to within the dipolarizing material (b).  All of the identified events showed an increase in the electron temperature and a coupled reduction in the electron density.  Figures 1c and (d) show the relative change in temperature and density respectively.  Overall, the temperature was found to increase by factors between 4 and 12, while the density dropped by factors of 3-10.  The variable plasma properties are thought to be linked to a variable reconnection location, particularly post-midnight.

Figure 1: Panels (a) and (b) show the electron density plotted aainst the electron temperature for before (a) and after (b) the dipolarization front.  These panels are plotted on the same axes scale for direct comparison.  The gray lines indicate how the events move in density-temperature space.  Panels (c) and (d) show the electron temperature and density (respectively) before the front plotted against the electron temperature and density after the passage of the front.  The points and error bars provided are the mean and standard error of the mean respectively.  The diagonal black dashed line shows the location of $y = x$: where the points would lie if there was no change following the passage of the front.  The red dashed lines indicate least squares linear fits to the data; the details of the fit parameters are provided on the panels.  The color bar for all four panels indicates the radial distance at which the spacecraft encountered the event.

 

For more information, see the paper below:

Smith, A. W., Jackman, C. M., Thomsen, M. F., Sergis, N., Mitchell, D. G., & Roussos, E. (2018). Dipolarization fronts with associated energized electrons in Saturn's magnetotail. Journal of Geophysical Research: Space Physics, 123, 2714–2735. https://doi.org/10.1002/2017JA024904

The Association of High‐Latitude Dayside Aurora With NBZ Field‐Aligned Currents

By Jennifer Carter, Department of Physics and Astronomy, University of Leicester, UK

Under northward interplanetary magnetic field conditions, when the IMF Bz > 0 nT, non-filamentary auroral emissions may be seen within the dayside polar cap and separate from the main auroral oval. These emissions are associated with lobe reconnection occurring at the high-latitude magnetopause on open field lines. Two mechanisms have been proposed to explain these emissions. The first involves the precipitation of magnetosheath plasma at the footprint of the high-latitude reconnection site, resulting in a “cusp spot”. This cusp spot has been shown to move in response to the east-west (BY) orientation of the solar wind. The second mechanism associates the auroral emissions known as High-Latitude Detached Arcs (HiLDAs) with upward field-aligned currents inside the polar cap. Under northward IMF, twin-cell field-aligned currents (NBZ system) can be found inside of the main region 1-region 2 field aligned current system. Under the influence of positive IMF BY, the upward NBZ cell expands across the noon sector in the Northern Hemisphere, whereas under negative BY, the downward cell will enlarge. The reverse scenario occurs in the Southern Hemisphere for either BYdirection.

Previous observations of HiLDAs have been limited to the Northern Hemisphere for a small data set, and previous authors have linked this phenomenon to season, as the HiLDAs have only been detected during the summer. We used concurrent auroral observations from Defense Meteorological Satellite Program Special Sensor Ultraviolet Spectrographic Imager (SSUSI) experiment, and FAC distributions constructed from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE), from the Iridium telecommunication satellite constellation, to perform a large statistical study of HiLDAs under varying IMF for both hemispheres. We observe a patch of auroral emission that is co-located with the upward NBZ FAC in the dayside polar cap in both the Northern and Southern Hemispheres under northward IMF conditions.

We observe the HiLDA emission to move in response to changes in the IMF BYcomponent (e.g. Figure 1), whereby the HiLDAs are seen to move into the polar cap under positive BY, or be pushed up against, and therefore indiscernible from, the main auroral oval under negative BY(Northern Hemisphere case). We also support the hypothesis that these emissions are only detectable in the summer hemisphere, indicating a dependence on ionospheric conductivity via photoionisation in the predominantly sunlit hemisphere.

For more information, see the paper below:

Carter, J. A., Milan, S. E., Fogg, A. R., Paxton, L. J., & Anderson, B. J. (2018). The association of high‐latitude dayside aurora with NBZ field‐aligned currents. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1029/2017JA025082

Figure 1: Northern Hemisphere summer auroral emissions in the Lyman-Birge-Hopfield long band with overlaid field-aligned current contours, for the Northern (N, row a) and Southern (S, row b) Hemispheres. Clock angles are given in the left-hand column. Interplanetary magnetic field magnitudes are between 5 and 10 nT. Field-aligned current contours are overlaid for upward (red) and downward (turquoise) currents, at absolute magnitudes of 0.1 (solid line), 0.3 (dashed line), and 0.5 (dotted line) μA/m2.

 

Solar Wind Dependence of Magnetospheric Ultra-Low Frequency Plasma Waves

By Sarah Bentley, Department of Meteorology, University of Reading, UK

Ultra-low frequency plasma waves (ULF, 1-15 mHz) are implicated in the energisation and transport of radiation belt electrons. Therefore a description of magnetospheric ULF wave power in terms of driving parameters is highly desirable for radiation belt forecasting; in particular, we want to describe power in terms of solar wind properties, as the solar wind is the dominant driver behind these waves.

However, identifying solar wind driving parameters is severely hampered by the nature of the solar wind. All solar wind parameters are highly interrelated due to their common solar sources and the interactions within the solar wind between the Sun and Earth, resulting in the effect that all solar wind properties correlate so strongly with speed vswthat investigating their relationship to magnetospheric properties is difficult.

To circumvent analysis techniques that require properties such as a linear interdependence between these parameters, we use a series of simple yet systematic two-parameter plots (e.g. Figure 1) to identify which parameters are causally correlated to ULF wave power, rather than just correlated via a relationship with speed vsw. We find that speed, the southward component of the interplanetary magnetic field and summed power in proton number density perturbations (vsw, Bz < 0 and δNp) are the three dominant parameters driving power in magnetospheric ultra-low frequency waves. These parameters can be used in future modelling but are also of interest because there is clearly a threshold at Bz = 0, and because ULF wave power depends more on perturbations δNp than the number density Np itself.

For more information, see the paper below or an informal blog post here.

Bentley, S. N., Watt, C. E. J., Owens, M. J., & Rae, I. J. (2018). ULF wave activity in the magnetosphere: Resolving solar wind interdependencies to identify driving mechanisms. Journal of Geophysical Research: Space Physics, 123. https://doi.org/10.1002/2017JA024740

Figure 1: A two-parameter plot taken from Bentley et al., 2018. We bin the ULF power observed at one station (roughly corresponding to geostationary orbit) at one frequency (2.5mHz) and observe whether it increases with increases in solar wind speed vswand/or the component Bz of the interplanetary magnetic field, using fifteen years of data. Cut-throughs at constant speed and Bz are shown in (b) and (c). ULF power increases with speed and with more strongly negative Bz for Bz<0, but only with speed for Bz>0.  

The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence

By Lloyd Woodham, Mullard Space Science Laboratory, University College London, UK

The solar wind contains turbulent fluctuations that are part of a continual cascade of energy from large scales down to smaller scales. At ion-kinetic scales, some of this energy is dissipated, resulting in a steepening in the spectrum of magnetic field fluctuations and heating of the ion velocity distributions, however, the specific mechanisms are still poorly understood. Understanding these mechanisms in the collisionless solar wind plasma is a major outstanding problem in the field of heliophysics research.

We use magnetic field and ion moment data from the MFI and SWE instruments on-board the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyse the spectral properties of magnetic field fluctuations between 0.1 and 5.5 Hz over 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI ‘noise-floor’ using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilise Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton-cyclotron resonance scale, 1/kc, compared to the proton inertial length di and proton gyroscale ρi. This agreement is strongest when we consider periods where βi,perp ~ 1, and is consistent with a spectral break at di for βi,par « 1 and ρi for βi,perp » 1.

Histograms for 2012 of the estimated helicity onset frequency, fb, versus the three characteristic plasma scales, converted into frequencies using Taylor's hypothesis - fL represents fkc, fdi, and fρi, for each column respectively. The data used are for periods where 0.95 ≥ βi,perp ≥ 1.05. The colour-bar represents the column-normalised number of spectra. The black dashed lines represent fb = fL and similarly, the red dashed lines are fb = fL√2 and fb = fL√2, which give the resolution of the wavelet transform about the line fb = fL due to the finite width of the Morlet wavelet in frequency space. We see the best agreement between fb and fkc during these periods.

We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc and its absolute value reaches a maximum at ρi. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfvénic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton-cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.

Woodham et al., 2018, The Role of Proton Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-kinetic Scales, ApJ, 856, 49, DOI: 10.3847/1538-4357/aab03d