MIST

Magnetosphere, Ionosphere and Solar-Terrestrial

Latest news

Announcement of New MIST Councillors.

We are very pleased to announce the following members of the community have been elected unopposed to MIST Council:

  • Rosie Johnson (Aberystwyth University), MIST Councillor
  • Matthew Brown (University of Birmingham), MIST Councillor
  • Chiara Lazzeri (MSSL, UCL), Student Representative

Rosie, Matthew, and Chiara will begin their terms in July. This will coincide with Jasmine Kaur Sandhu, Beatriz Sanchez-Cano, and Sophie Maguire outgoing as Councillors.

The current composition of Council can be found on our website, and this will be amended in July to reflect this announcement (https://www.mist.ac.uk/community/mist-council).

Nominations are open for MIST Council

We are very pleased to open nominations for MIST Council. There are three positions available (detailed below), and elected candidates would join Georgios Nicolaou, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 31 May.

Council positions open for nomination

2 x MIST Councillor - a three year term (2024 - 2027). Everyone is eligible.

MIST Student Representative - a one year term (2024 - 2025). Only PhD students are eligible. See below for further details.

About being on MIST Council

If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk. Two of our outgoing councillors, Beatriz and Sophie, have summarised their experiences being on MIST Council below.

Beatriz Sanchez-Cano (MIST Councillor):

"Being part of the MIST council for the last 3 years has been a great experience personally and professionally, in which I had the opportunity to know better our community and gain a larger perspective of the matters that are important for the MIST science progress in the UK. During this time, I’ve participated in a number of activities and discussions, such as organising the monthly MIST seminars, Autumn MIST meetings, writing A&G articles, and more importantly, being there to support and advise our colleagues in cases of need together with the wonderful council members. MIST is a vibrant and growing community, and the council is a faithful reflection of it."

Sophie Maguire (MIST Student Representative):

"Being the student representative for MIST council has been an amazing experience. I have been part of organizing conferences, chairing sessions, and writing grant applications based on the feedback MIST has received. From a wider perspective, MIST has helped to grow and support my professional networks which in turn, directly benefits my PhD work as well. I would encourage any PhD student to apply for the role of MIST Student Representative and I would be happy to answer any questions or queries you have about the role."

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 31 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:

  1. Name
  2. Position (Councillor/Student Rep.)
  3. Nomination Statement (150 words max including a bit about the nominee and focusing on your reasons for nominating. This will be circulated to the community in the event of a vote.)

MIST Council details

  • Sophie Maguire, University of Birmingham, Earth's ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Georgios Nicolaou, MSSL, solar wind plasma - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Beatriz Sanchez-Cano, University of Leicester, Mars plasma - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Jasmine Kaur Sandhu, University of Leicester, Earth’s inner magnetosphere - This email address is being protected from spambots. You need JavaScript enabled to view it.
  • Andy Smith, Northumbria University, Space Weather - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Maria-Theresia Walach, Lancaster University, Earth’s ionosphere - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • Emma Woodfield, British Antarctic Survey, radiation belts - This email address is being protected from spambots. You need JavaScript enabled to view it. 
  • MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it. 

Winners of Rishbeth Prizes 2023

We are pleased to announce that following Spring MIST 2023 the Rishbeth Prizes this year are awarded to Sophie Maguire (University of Birmingham) and Rachel Black (University of Exeter).

Sophie wins the prize for the best MIST student talk which was entitled “Large-scale plasma structures and scintillation in the high-latitude ionosphere”. Rachel wins the best MIST poster prize, for a poster entitled “Investigating different methods of chorus wave identification within the radiation belts”. Congratulations to both Sophie and Rachel!

As prize winners, Sophie and Rachel will be invited to write articles for Astronomy & Geophysics, which we look forward to reading.

MIST Council extends their thanks to the University of Birmingham for hosting the Spring MIST meeting 2023, and to the Royal Astronomical Society for their generous and continued support of the Rishbeth Prizes.

Nominations for MIST Council

We are pleased to open nominations for MIST Council. There are two positions available (detailed below), and elected candidates would join Beatriz Sanchez-Cano, Jasmine Kaur Sandhu, Andy Smith, Maria-Theresia Walach, and Emma Woodfield on Council. The nomination deadline is Friday 26 May.

Council positions open for nomination

  • MIST Councillor - a three year term (2023 - 2026). Everyone is eligible.
  • MIST Student Representative - a one year term (2023 - 2024). Only PhD students are eligible. See below for further details.

About being on MIST Council


If you would like to find out more about being on Council and what it can involve, please feel free to email any of us (email contacts below) with any of your informal enquiries! You can also find out more about MIST activities at mist.ac.uk.

Rosie Hodnett (current MIST Student Representative) has summarised their experience on MIST Council below:
"I have really enjoyed being the PhD representative on the MIST council and would like to encourage other PhD students to nominate themselves for the position. Some of the activities that I have been involved in include leading the organisation of Autumn MIST, leading the online seminar series and I have had the opportunity to chair sessions at conferences. These are examples of what you could expect to take part in whilst being on MIST council, but the council will welcome any other ideas you have. If anyone has any questions, please email me at This email address is being protected from spambots. You need JavaScript enabled to view it..”

How to nominate

If you would like to stand for election or you are nominating someone else (with their agreement!) please email This email address is being protected from spambots. You need JavaScript enabled to view it. by Friday 26 May. If there is a surplus of nominations for a role, then an online vote will be carried out with the community. Please include the following details in the nomination:
  • Name
  • Position (Councillor/Student Rep.)
  • Nomination Statement (150 words max including a bit about the nominee and your reasons for nominating. This will be circulated to the community in the event of a vote.)
 
MIST Council contact details

Rosie Hodnett - This email address is being protected from spambots. You need JavaScript enabled to view it.
Mathew Owens - This email address is being protected from spambots. You need JavaScript enabled to view it.
Beatriz Sanchez-Cano - This email address is being protected from spambots. You need JavaScript enabled to view it.
Jasmine Kaur Sandhu - This email address is being protected from spambots. You need JavaScript enabled to view it.
Andy Smith - This email address is being protected from spambots. You need JavaScript enabled to view it.
Maria-Theresia Walach - This email address is being protected from spambots. You need JavaScript enabled to view it.
Emma Woodfield - This email address is being protected from spambots. You need JavaScript enabled to view it.
MIST Council email - This email address is being protected from spambots. You need JavaScript enabled to view it.

RAS Awards

The Royal Astronomical Society announced their award recipients last week, and MIST Council would like to congratulate all that received an award. In particular, we would like to highlight the following members of the MIST Community, whose work has been recognised:
  • Professor Nick Achilleos (University College London) - Chapman Medal
  • Dr Oliver Allanson (University of Birmingham) - Fowler Award
  • Dr Ravindra Desai (University of Warwick) - Winton Award & RAS Higher Education Award
  • Professor Marina Galand (Imperial College London) - James Dungey Lecture

Nuggets of MIST science, summarising recent papers from the UK MIST community in a bitesize format.

If you would like to submit a nugget, please fill in the following form: https://forms.gle/Pn3mL73kHLn4VEZ66 and we will arrange a slot for you in the schedule. Nuggets should be 100–300 words long and include a figure/animation. Please get in touch!
If you have any issues with the form, please contact This email address is being protected from spambots. You need JavaScript enabled to view it.. 

Bifurcated Region 2 Field-Aligned Currents Associated With Substorms

By Harneet Sangha (University of Leicester)

The Earth’s field-aligned currents (FACs) are a key component of the solar wind-magnetosphere-ionosphere-atmosphere coupled system. They connect the magnetosphere to the ionosphere, forming two concentric rings of opposite polarity currents at dawn and dusk. The inner ring (Region 1, R1), at higher latitudes, connects to the magnetopause, whereas the lower latitude ring (Region 2, R2) connects to the inner magnetosphere. By studying them, we are able to observe the energy transfer throughout the system. They are highly variable, and the small scale changes can be difficult to detect. With the use of the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) (comprising 66-satellites that gather the data), we can observe these small scale, structures and variations in the FACs on short time scales.

In our work, we have observed a new phenomenon which we describe as the bifurcation of the R2 currents, and the formation of a new R2 current ring (seen in Figure 1). These current signatures appear to be associated with the substorm expansion phase, and during ongoing geomagnetic activity they appear to have a 1 hour quasi-periodicity. We suggest that these bifurcations are related fast, westward flows in the midlatitude ionosphere, known as subauroral polarization streams (SAPS).

We have proposed a new mechanism that describes the formation of these current bifurcations - consecutive particle injections into the inner magnetosphere during disturbed conditions cause separate partial ring currents to form, leading to the presence of distinct R2 current systems.

AMPERE current density data.

Figure 1: A series of polar projections of the AMPERE current density data for the Northern Hemisphere on 2 June 2011, from 06:50 to 08:12 UT. The colour scale for downward (blue) and upward (red) FACs saturate at ± 0.5 µA/m2. Concentric circles show colatitudes in steps of 10°, and 12 MLT (local noon) is presented at the top of the plots, with 06 MLT (dawn) on the right. The dashed box shows the dawn-dusk axis. At 06:50 UT a standard R1/R2 FAC distribution is evident. The locations of interest are highlighted in the first panel with arrows, where by 07:44 UT the R2 FACs bifurcate to form two concentric rings and can be seen between 20° and 30° colatitude.

For more information, please see the paper:

Sangha, H., Milan, S. E., Carter, J. A., Fogg, A. R., Anderson, B. J., Korth, H., & Paxton, L. J. (2020). Bifurcated Region 2 field‐aligned currents associated with substorms. Journal of Geophysical Research: Space Physics, 125, e2019JA027041. https://doi.org/10.1029/2019JA027041

Evaluating the Accuracy of Solar Orbiter Plasma Measurements

By Georgios Nicolaou (MSSL, UCL)
 
The plasma instruments on board Solar Orbiter will determine the three-dimensional velocity distribution functions of the plasma ions and electrons with high time resolution, within heliocentric distances from ~0.3 to 1 au. The analysis of these distributions will determine the plasma bulk parameters (e.g., density, velocity, and temperature). New work by Nicolaou et al. (2019, 2020) assesses the accuracy of these measurements, considering the proton and electron instruments separately.
 
1. The Impact of Turbulent Solar Wind Fluctuations on Proton Measurements

The Solar Wind Analyser’s Proton Alpha Sensor (SWA-PAS) on board Solar Orbiter will measure solar wind plasma protons. However, due to the dynamic and turbulent nature of solar wind plasma, the accurate determination of the plasma parameters from the observations is significantly challenging. Nicolaou et al. 2019, simulated turbulent solar wind proton plasma that exhibits the typical features of turbulence spectrum. They modelled the expected observations by SWA-PAS (see Figure 1) and analyzed them using standard analysis methods in order to quantify the accuracy of the derived plasma bulk parameters. The results show that the typical turbulence will not significantly affect the accuracy of the high-time resolution measurements by SWA-PAS. In addition, the authors compare the accuracy of the instrument as a function of the acquisition time and discuss the sources of errors in the derived parameters.


Time series of input data compared to modelled plasma moments

Figure 1. Time series of modeled solar wind with a turbulent spectrum consisting of Alfvén waves and slow modes and a comparison to derived moment parameters from the expected SWA-PAS observations at lower resolution. Each panel shows the input data (gray line) and the moments derived from the modeled observations (bullets). The shadowed areas represent the time intervals in which the instrument collects counts to construct an entire 3D VDF. The top panel shows the plasma density the middle panel shows the diagonal elements of the plasma temperature tensor, and the bottom panel shows the plasma bulk speed. Besides the small systematic underestimation of the plasma density and plasma temperature, the derived moments suggest that the accuracy of SWA-PAS measurements, under typical turbulent solar wind conditions, is remarkably high.

 
2. Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements

The Solar Wind Analyser’s Electron Analyser System (SWA-EAS) is designed to observe the solar wind electrons. In burst-mode operations, the instrument will obtain measurements in the 2D velocity space (as opposed to full 3D velocity distributions) in order to construct the pitch angle distributions of plasma electrons. The reduction of one dimension reduces the statistical significance of the observations and makes the analysis more challenging. Nicolaou et al. 2020, investigate the expected accuracy of the derived bulk parameters of supra-thermal electrons, which are often described by kappa distribution functions. They simulate the expected observations within the heliocentric distance range from 0.3 to 1 au and derive the plasma bulk parameters by fitting the synthetic observations (see Figure 2). The study shows that the proper fitting analysis of the measurements can derive the plasma parameters with significant accuracy, even at 1 au, where the expected particle flux is very low.
 

A comparison of derived plasma parameters to input plasma density.

Figure 2. (From top to bottom) The derived electron density over input density, kappa index, parallel and perpendicular temperature as functions of the input plasma density. The red points represent the mean values (over 200 samples) of the parameters derived by fitting only the measurements with Ci ≥ 1. The blue points represent the mean values of the parameters derived by fitting to all measurements including those with Ci = 0. The shadowed regions represent the standard deviations of the derived parameters. The dashed lines represent the input parameters.
 

For more information, please see the papers:

Nicolaou, G., Verscharen, D., Wicks, R. T., & Owen, C. J. (2019). The Impact of Turbulent Solar Wind Fluctuations on Solar Orbiter Plasma Proton Measurements. The Astrophysical Journal, 886:101. https://doi.org/10.3847/1538-4357/ab48e3

Nicolaou, G., Wicks, R., Livadiotis, G., Verscharen, D., Owen, C., & Kataria, D. (2020). Determining the Bulk Parameters of Plasma Electrons from Pitch-Angle Distribution Measurements. Entropy, 22, 103. https://doi.org/10.3390/e22010103

Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits

By Omakshi Agiwal (Imperial College London)

The Cassini spacecraft completed 20 high latitude orbits known as the ‘F-ring orbits’ during the end of mission (corresponding to northern Saturnian summer). Each orbit provided a ~2 day sample of the magnetotail region, where the measured radial magnetic field Br and the position of the magnetic equator/magnetotail current sheet centre (indicated by Br=0) showed significant orbit-to-orbit variability, despite a highly repeatable spacecraft trajectory.

Our work considers two well-known sources of temporal variability in the Saturnian magnetosphere:

  1. Solar wind forcing, which acts to displace the magnetic equator from the rotational equator. The forcing increases with radial distance from the planet and is variable with solar wind conditions on ~ week-long timescales.
  2. Planetary period oscillations (PPO), which refer to two magnetic perturbation systems (one in each hemisphere) that rotate independently around Saturn’s spin/dipole axis with periods of ~10.7 hours. They modulate the vertical position and thickness of the magnetotail current sheet depending on their relative strength and phase.

A movie showing a spacecraft trajectory through the modelled current sheet. The results show a good correspondence between magnetometer observations and modelled values as well as illustrating the temporal evolution.Figure 1: (a) Illustrates the spacecraft (blue dot) traversing our temporally variable modelled current sheet, shown by the shaded grey region. The position of the magnetic equator is shown by the dashed black line. The two arrows on the polar-plot show an equatorial projection of the northern (blue) and southern (red) PPO fields rotating with a ~ fixed relative phase (ΔΦ), with the spacecraft on the nightside. (b) Shows the time-series of Br measured by the magnetometer (solid grey line) and the modelled (dashed orange line) from our work. (c) Illustrates the temporal evolution of the z-position of the magnetic equator and the thickness of the current sheet from the model.

We combine models that consider the effects of each perturbation source on Br, and the model output for the magnetotail pass of an example orbit is shown in Figure 1. Overall, we show that the temporal variability in 90% of the F-ring orbits is consistent with the expected variability due to solar wind forcing and dual-PPO modulation. This demonstrates an understanding of the key sources of large scale variability in Saturn’s magnetotail, and shows that magnetotail dynamics can reliably be studied using high latitude orbits (which is novel in our method).

For more information, please see the paper:

Agiwal, O., Hunt, G. J., Dougherty, M. K., Cowley, S. W. H., & Provan, G. ( 2019). Modelling the temporal variability in Saturn's magnetotail current sheet from the Cassini F‐ring orbits. Journal of Geophysical Research: Space Physics, 124. https://doi.org/10.1029/2019JA027371 

Active Region Modulation of Coronal Hole Solar Wind

By Allan Macneil (University of Reading)

The solar wind is the continuous outflow of plasma from the Sun’s atmosphere (the corona) into interplanetary space along ‘open’ magnetic field. The mechanisms which produce the solar wind; opening the coronal magnetic field, accelerating the plasma, and imbuing it with a range of compositional and dynamical properties, are not fully understood. 'Coronal holes’, which are regions of open magnetic field, are known to be the source of the ‘fast’ (v > 500 km/s) solar wind. However, the origins of ‘slow’ (v < 400 km/s) solar wind are unclear, particularly as slow wind properties imply origins in closed magnetic field regions. We present a case study into one candidate slow wind source: active regions.

Solar images of the coronal hole alongside time series of solar wind properties.

Figure 1: Top row shows EUV solar images of the source coronal hole (CH), and the CH plus active region (AR) during the first and second rotations. The CH and AR are outlined in blue and red, and green crosses show the location of mapped solar wind source locations. The lower panels show in situ and mapping time series are shown for each associated solar wind period.

Active regions are locations of concentrated magnetic flux. They are associated with bright loops in the corona, and are a possible slow solar wind source. In April 2016, an active region emerged at the eastern boundary of a coronal hole which had produced Earth-directed solar wind one solar rotation prior (see Figure 1). This unique observational configuration is shown in Figure 1. We study what changes the newly-emerged active region causes in the solar wind, by contrasting linked in situ solar wind and remote sensing coronal observations between the two periods. Primarily, we find that the active region causes increased variability in composition and structuring of the solar wind located at the edge of the coronal hole stream. We conclude that this new variability is most likely due to interaction between the active region and the coronal hole in the form of loop-opening interchange reconnection. This process changes the open field topology around the coronal hole boundary, and may sporadically release plasma of a range of properties from previously closed magnetic fields into the solar wind.

 For more information, please see the paper:

Macneil, A. R., Owen, C. J., Baker, D., et al. (2019). Active Region Modulation of Coronal Hole Solar Wind. The Astrophysical Journal, 887(2), 146, https://doi.org/10.3847/1538-4357/ab5586 

Electron Diffusion by Wave-Particle Interactions in the Radiation Belt

By Oliver Allanson (University of Reading)

The Earth's outer radiation belt is a dynamic and extended radiation environment within the inner magnetosphere, composed of energetic plasma that is trapped by the geomagnetic field. The size and location of the outer radiation belt varies dramatically in response to solar wind variability - orders of magnitude changes in the electron flux can occur on short timescales (~hours). However, it is very challenging to accurately predict, or model, fluxes within the radiation belt. This is a pressing concern given the hundreds of satellites that orbit within this hazardous environment, and so the prediction of its variability is a key goal of the magnetospheric space weather community (e.g. see Horne et al., 2013).

Most physics-based computer models of particle dynamics in the radiation belts rely upon the assumption of slow perturbations to electron distributions due to interactions with low amplitude electromagnetic waves. However, satellite observations have shown that high amplitude waves and correspondingly large changes in electron distributions are not rare (e.g. see a recent example with observations from the ARASE satellite in Kurita et al., 2018). In our novel electromagnetic particle-in-cell numerical experiments, we analyse the diffusion in energy and pitch angle space of 100 million individual high-energy electrons in conditions typical of the radiation belt environment - due to interactions with externally driven electromagnetic waves. The method is illustrated in Figure 1. We present two main conclusions:

(i) On very short timescales (~0.1 second) we observe an initial ‘anomalous’ electron response, for which the rate of diffusion is nonlinear in time.

(ii) After the initial transient phase we observe a normal diffusive response that is consistent with quasilinear theory.

A schematic showing the steps taken by the particle-in-cell numerical experiment.

Figure 1: A schematic illustrating the particle-in-cell numerical experiment.

 The results demonstrate the exciting capabilities of our new experimental technique. Here we prove the concept for conditions that are unlikely to deviate from standard theory, and in future experiments this framework will allow us to investigate the changing nature of the electron response with increased electromagnetic wave amplitude.

For more information, please see the paper:

Allanson, O.,  Watt, C. E. J.,  Ratcliffe, H.,  Meredith, N. P.,  Allison, H. J.,  Bentley, S. N., et al. ( 2019).  Particle‐in‐cell experiments examine electron diffusion by whistler‐mode waves: 1. Benchmarking with a cold plasma. Journal of Geophysical Research: Space Physics,  124. https://doi.org/10.1029/2019JA027088